Derivatives of Inner Functions in Weighted Mixed Norm Spaces

被引:0
作者
Atte Reijonen
机构
[1] University of Eastern Finland,
来源
The Journal of Geometric Analysis | 2019年 / 29卷
关键词
Blaschke product; Doubling weight; Inner function; Mixed norm space; Schwarz–Pick lemma; Primary: 30J05; Secondary: 30J10;
D O I
暂无
中图分类号
学科分类号
摘要
For 0<p,q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p,q<\infty $$\end{document}, we characterize those radial weights ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} satisfying a two-sided doubling condition for which the asymptotic equation ‖Θ′‖Aωp,qq=∫01Mpq(r,Θ′)ω(r)dr≍∫01∫02π1-|Θ(reiθ)|1-rpdθq/pω(r)dr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert \Theta '\Vert _{A^{p,q}_\omega }^q= \int _0^1 M_p^q(r,\Theta ')\,\omega (r)\,\mathrm{d}r \asymp \int _0^1 \left( \int _0^{2\pi } \left( \frac{1-|\Theta (re^{i\theta })|}{1-r}\right) ^p \mathrm{d}\theta \right) ^{q/p} \omega (r)\, \mathrm{d}r \end{aligned}$$\end{document}is valid for all inner functions Θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta $$\end{document}. As a consequence of this result, we obtain a sharp condition which guarantees that the only inner functions whose derivative belongs to the weighted mixed norm space Aωp,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^{p,q}_\omega $$\end{document} are Blaschke products. Moreover, a condition which implies that the only inner functions whose derivative belongs to Aωp,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^{p,q}_\omega $$\end{document} are finite Blaschke products is proved.
引用
收藏
页码:1859 / 1875
页数:16
相关论文
共 50 条
  • [41] GENERALIZED COMPOSITION OPERATORS FROM μ-BLOCH SPACES INTO MIXED NORM SPACES
    Pan, Chunping
    ARS COMBINATORIA, 2011, 102 : 263 - 268
  • [42] Multiplication operators between mixed norm Lebesgue spaces
    Camilo Chaparro, Hector
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (03): : 771 - 778
  • [43] Fractional Integration on Mixed Norm Spaces. I
    Feng Guo
    Xiang Fang
    Shengzhao Hou
    Xiaolin Zhu
    Complex Analysis and Operator Theory, 2024, 18
  • [44] BERGMAN TYPE OPERATOR ON MIXED NORM SPACES WITH APPLICATIONS
    REN GUANGBIN * SHI JIHUAI *
    Chinese Annals of Mathematics, 1997, (03) : 2+4+6+8+10+12 - 14+16+
  • [45] Bergman type operator on mixed norm spaces with applications
    Ren, GB
    Shi, JH
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1997, 18 (03) : 265 - 276
  • [46] Strong maximal operator on mixed-norm spaces
    Ho K.-P.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2016, 62 (2) : 275 - 291
  • [47] Fractional Integration on Mixed Norm Spaces. I
    Guo, Feng
    Fang, Xiang
    Hou, Shengzhao
    Zhu, Xiaolin
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (03)
  • [48] Fractional Integration on Mixed Norm Spaces. II
    Xiaolin Zhu
    Xiang Fang
    Feng Guo
    Shengzhao Hou
    The Journal of Geometric Analysis, 2023, 33
  • [49] Fractional Integration on Mixed Norm Spaces. II
    Zhu, Xiaolin
    Fang, Xiang
    Guo, Feng
    Hou, Shengzhao
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (05)
  • [50] Inner functions on the bidisk and associated Hilbert spaces
    Bickel, Kelly
    Knese, Greg
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (11) : 2753 - 2790