Power Values of Generalized Derivations with Annihilator Conditions in Prime Rings

被引:0
作者
Basudeb Dhara
Vincenzo De Filippis
Giovanni Scudo
机构
[1] Belda College,Dipartimento di Scienze per l’Ingegneria e per l’Architettura
[2] Università di Messina,Dipartimento di Matematica
[3] Università di Messina,undefined
来源
Mediterranean Journal of Mathematics | 2013年 / 10卷
关键词
Primary 16N60; Secondary 16W25; Prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a prime ring, H a nonzero generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that there exists \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 \neq a \in R}$$\end{document} such that a(usH(u)ut)n = 0 for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in L}$$\end{document}, where s ≥ 0, t ≥ 0, n ≥ 1 are fixed integers. Then s = 0, H(x) = bx for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in R}$$\end{document} with ab = 0, unless R satisfies s4, the standard identity in four variables. We also describe completely this last case.
引用
收藏
页码:123 / 135
页数:12
相关论文
共 13 条
[1]  
Chang C.-M.(2001)Derivations on one-sided ideals of prime rings Tamsui Oxf. J. Math. Sci. 17 139-145
[2]  
Lin Yu-C.(1988)GPI’s having coefficients in Utumi quotient rings Proc. Amer. Math. Soc. 103 723-728
[3]  
Chuang C.L.(1996)Rings with annihilator conditions on multilinear polynomials Chinese J. Math. 24 177-185
[4]  
Chuang C.L.(2009)Annihilators of power values of generalized derivations on multilinear polynomials Bull. Aust. Math. Soc. 80 217-232
[5]  
Lee T.K.(2009)Notes on generalized derivations on Lie ideals in prime rings Bull. Korean Math. Soc. 46 599-605
[6]  
De Filippis V.(2009)Power values of derivations with annihilator conditions on Lie ideals in prime rings Comm. Algebra 37 2159-2167
[7]  
Dhara B.(1978)Differential identities of prime rings Algebra i Logika 17 155-168
[8]  
De Filippis V.(1988)Differential identities, Lie ideals and Posner’s theorems Pacific J. Math. 134 275-297
[9]  
Dhara B.(1999)Generalized derivations of left faithful rings Comm. Algebra 27 4057-4073
[10]  
Kharchenko V.K.(1992)Semiprime rings with differential identities Bull. Inst. Math. Acad. Sinica 20 27-38