On Pólya’s Inequality for Torsional Rigidity and First Dirichlet Eigenvalue

被引:0
作者
M. van den Berg
V. Ferone
C. Nitsch
C. Trombetti
机构
[1] University of Bristol University Walk,School of Mathematics
[2] Università degli Studi di Napoli Federico II,undefined
来源
Integral Equations and Operator Theory | 2016年 / 86卷
关键词
Torsional rigidity; First Dirichlet eigenvalue; 49J45; 49R05; 35P15; 47A75; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} be an open set in Euclidean space with finite Lebesgue measure |Ω|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert \Omega \vert $$\end{document}. We obtain some properties of the set function F:Ω↦R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:\Omega \mapsto {\mathbb {R}}^+$$\end{document} defined by F(Ω)=T(Ω)λ1(Ω)|Ω|,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} F(\Omega )=\frac{T(\Omega )\lambda _1(\Omega )}{\vert \Omega \vert } , \end{aligned}$$\end{document}where T(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(\Omega )$$\end{document} and λ1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1(\Omega )$$\end{document} are the torsional rigidity and the first eigenvalue of the Dirichlet Laplacian respectively. We improve the classical Pólya bound F(Ω)≤1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(\Omega )\le 1,$$\end{document} and show that F(Ω)≤1-νmT(Ω)|Ω|-1-2m,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} F(\Omega )\le 1- \nu _m T(\Omega )|\Omega |^{-1-\frac{2}{m}}, \end{aligned}$$\end{document}where νm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _m$$\end{document} depends only on m. For any m=2,3,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2,3,\ldots $$\end{document} and ϵ∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \in (0,1)$$\end{document} we construct an open set Ωϵ⊂Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\epsilon }\subset {\mathbb {R}}^m$$\end{document} such that F(Ωϵ)≥1-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(\Omega _{\epsilon })\ge 1-\epsilon $$\end{document}.
引用
收藏
页码:579 / 600
页数:21
相关论文
共 31 条
  • [21] BOUNDS FOR EXIT TIMES OF BROWNIAN MOTION AND THE FIRST DIRICHLET EIGENVALUE FOR THE LAPLACIAN
    Banuelos, Rodrigo
    Mariano, Phanuel
    Wang, Jing
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (08) : 5409 - 5432
  • [22] Dual variational formulas for the first Dirichlet eigenvalue on half-line
    Chen, MF
    Zhang, YH
    Zhao, KL
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (06): : 847 - 861
  • [23] Dual variational formulas for the first Dirichlet eigenvalue on half-line
    陈木法
    张余辉
    赵晓亮
    Science China Mathematics, 2003, (06) : 847 - 861
  • [24] Estimates of the first Dirichlet eigenvalue from exit time moment spectra
    Hurtado, A.
    Markvorsen, S.
    Palmer, V.
    MATHEMATISCHE ANNALEN, 2016, 365 (3-4) : 1603 - 1632
  • [25] From the Brunn-Minkowski Inequality to a Class of Generalized Poincaré-Type Inequalities for Torsional Rigidity
    Niufa Fang
    Jinrong Hu
    Leina Zhao
    The Journal of Geometric Analysis, 2024, 34
  • [26] From the Brunn-Minkowski Inequality to a Class of Generalized Poincaré-Type Inequalities for Torsional Rigidity
    Fang, Niufa
    Hu, Jinrong
    Zhao, Leina
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (04)
  • [27] Chiti-type Reverse Holder Inequality and Torsional Rigidity Under Integral Ricci Curvature Condition
    Chen, Hang
    POTENTIAL ANALYSIS, 2022, 56 (02) : 333 - 349
  • [28] Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle
    Della Pietra, Francesco
    Di Blasio, Giuseppina
    Gavitone, Nunzia
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 278 - 291
  • [29] Chiti-type Reverse Hölder Inequality and Torsional Rigidity Under Integral Ricci Curvature Condition
    Hang Chen
    Potential Analysis, 2022, 56 : 333 - 349
  • [30] Timoshenko & Lekhnitskii's puzzle ? Rule of swapping for the torsional rigidity of a rectangular bar
    Tsai, Cho Liang
    Wang, Chih Hsing
    Xu, Min-Han
    HELIYON, 2023, 9 (09)