On Pólya’s Inequality for Torsional Rigidity and First Dirichlet Eigenvalue

被引:0
作者
M. van den Berg
V. Ferone
C. Nitsch
C. Trombetti
机构
[1] University of Bristol University Walk,School of Mathematics
[2] Università degli Studi di Napoli Federico II,undefined
来源
Integral Equations and Operator Theory | 2016年 / 86卷
关键词
Torsional rigidity; First Dirichlet eigenvalue; 49J45; 49R05; 35P15; 47A75; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} be an open set in Euclidean space with finite Lebesgue measure |Ω|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert \Omega \vert $$\end{document}. We obtain some properties of the set function F:Ω↦R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:\Omega \mapsto {\mathbb {R}}^+$$\end{document} defined by F(Ω)=T(Ω)λ1(Ω)|Ω|,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} F(\Omega )=\frac{T(\Omega )\lambda _1(\Omega )}{\vert \Omega \vert } , \end{aligned}$$\end{document}where T(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(\Omega )$$\end{document} and λ1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1(\Omega )$$\end{document} are the torsional rigidity and the first eigenvalue of the Dirichlet Laplacian respectively. We improve the classical Pólya bound F(Ω)≤1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(\Omega )\le 1,$$\end{document} and show that F(Ω)≤1-νmT(Ω)|Ω|-1-2m,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} F(\Omega )\le 1- \nu _m T(\Omega )|\Omega |^{-1-\frac{2}{m}}, \end{aligned}$$\end{document}where νm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _m$$\end{document} depends only on m. For any m=2,3,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2,3,\ldots $$\end{document} and ϵ∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \in (0,1)$$\end{document} we construct an open set Ωϵ⊂Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\epsilon }\subset {\mathbb {R}}^m$$\end{document} such that F(Ωϵ)≥1-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(\Omega _{\epsilon })\ge 1-\epsilon $$\end{document}.
引用
收藏
页码:579 / 600
页数:21
相关论文
共 31 条
  • [1] On Plya's Inequality for Torsional Rigidity and First Dirichlet Eigenvalue
    van den Berg, M.
    Ferone, V.
    Nitsch, C.
    Trombetti, C.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2016, 86 (04) : 579 - 600
  • [2] On Blaschke–Santaló diagrams for the torsional rigidity and the first Dirichlet eigenvalue
    Ilaria Lucardesi
    Davide Zucco
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 175 - 201
  • [3] On Blaschke-Santalo diagrams for the torsional rigidity and the first Dirichlet eigenvalue
    Lucardesi, Ilaria
    Zucco, Davide
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (01) : 175 - 201
  • [4] Optimization Problems Involving the First Dirichlet Eigenvalue and the Torsional Rigidity
    van den Berg, Michiel
    Buttazzo, Giuseppe
    Velichkov, Bozhidar
    NEW TRENDS IN SHAPE OPTIMIZATION, 2015, 166 : 19 - 41
  • [5] Sharp estimates for the first p-Laplacian eigenvalue and for the p-torsional rigidity on convex sets with holes
    Paoli, Gloria
    Piscitelli, Gianpaolo
    Trani, Leonardo
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [6] Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators
    Della Pietra, Francesco
    Gavitone, Nunzia
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (2-3) : 194 - 209
  • [7] On relations between principal eigenvalue and torsional rigidity
    van den Berg, Michiel
    Buttazzo, Giuseppe
    Pratelli, Aldo
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (08)
  • [8] Isoperimetric Inequality for Torsional Rigidity in Multidimensional Domains
    Avkhadiev, F. G.
    RUSSIAN MATHEMATICS, 2012, 56 (07) : 39 - 43
  • [9] Isoperimetric inequality for torsional rigidity in multidimensional domains
    F. G. Avkhadiev
    Russian Mathematics, 2012, 56 (7) : 39 - 43
  • [10] Isoperimetric inequality for torsional rigidity in the complex plane
    Salahudinov, RG
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2001, 6 (03): : 253 - 260