Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions

被引:0
作者
O. L. Vinogradov
机构
[1] St. Petersburg State University,
来源
Siberian Mathematical Journal | 2017年 / 58卷
关键词
inequalities of Akhiezer–Kreĭn–Favard type; entire function of exponential type; convolution;
D O I
暂无
中图分类号
学科分类号
摘要
We establish sharp estimates for the best approximations of convolution classes by entire functions of exponential type. To obtain these estimates, we propose a new method for testing Nikol’skiĭ-type conditions which is based on kernel periodization with an arbitrarily large period and ensuing passage to the limit. As particular cases, we obtain sharp estimates for approximation of convolution classes with variation diminishing kernels and generalized Bernoulli and Poisson kernels.
引用
收藏
页码:190 / 204
页数:14
相关论文
共 23 条
[11]  
Dzyadyk V. K.(1987)On best approximation in classes of periodic functions defined by integrals of a linear combination of absolutely monotonic kernels Dokl. Akad. Nauk SSSR 295 1313-1318
[12]  
Nguen T. T. K.(1990)Rolle’s theorem for differential operators, and some extremal problems in approximation theory Math. USSR-Izv. 34 609-626
[13]  
Nguen T. T. K.(1939)Oscillation properties of differential operators and convolution operators, and some applications Ber. Verh. sächs. Akad. Wiss. Leipzig 91 3-24
[14]  
Nagy B.(2005)Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. II. Nichtperiodischer Fall Ukrainian Math. J. 57 1120-1148
[15]  
Serdyuk A. S.(2016)Best approximations and widths of classes of convolutions of periodic functions of high smoothness J. Math. Sci. (New York) 217 3-22
[16]  
Vinogradov O. L.(2009)A nonperiodic spline analog of the Akhiezer–Kreĭn–Favard operators Math. Notes 85 544-557
[17]  
Gladkaya A. V.(1979)Sharp inequalities for approximations of classes of periodic convolutions by odd-dimensional subspaces of shifts J. Anal. Math. 35 209-235
[18]  
Vinogradov O. L.(1938)On n-widths of periodic functions Dokl. Akad. Nauk SSSR 18 619-623
[19]  
Pinkus A.(1992)Best approximation of continuous differentiable functions on the real axis Math. Notes 51 611-617
[20]  
Kreĭn M. G.(1999)Widths of classes of convolutions with Poisson kernel Ukr. Mat. Zh. 51 674-687