Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions

被引:0
作者
O. L. Vinogradov
机构
[1] St. Petersburg State University,
来源
Siberian Mathematical Journal | 2017年 / 58卷
关键词
inequalities of Akhiezer–Kreĭn–Favard type; entire function of exponential type; convolution;
D O I
暂无
中图分类号
学科分类号
摘要
We establish sharp estimates for the best approximations of convolution classes by entire functions of exponential type. To obtain these estimates, we propose a new method for testing Nikol’skiĭ-type conditions which is based on kernel periodization with an arbitrarily large period and ensuing passage to the limit. As particular cases, we obtain sharp estimates for approximation of convolution classes with variation diminishing kernels and generalized Bernoulli and Poisson kernels.
引用
收藏
页码:190 / 204
页数:14
相关论文
共 23 条
[1]  
Favard J.(1937)Sur les méilleurs procédés d’approximation de certaines classes des fonctions par des polynomes trigonométriques Bull. Sci. Math. 61 243-256
[2]  
Akhiezer N. I.(1937)Best approximation of differentiable periodic functions by trigonometric sums Dokl. Akad. Nauk SSSR 15 107-112
[3]  
Kreĭn M. G.(1946)Approximation of functions by trigonometric polynomials in the mean Izv. Akad. Nauk SSSR Ser. Mat. 10 207-256
[4]  
Nikol’skiĭ S. M.(1938)Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. I. Periodischer Fall Ber. Verh. sächs. Akad. Wiss. Leipzig 90 103-134
[5]  
Nagy B.(2010)Nikol’skii’s theorem for kernels satisfying the more general condition than Tr. Inst. Prikl. Mat. Mekh. NAN Ukrainy 20 75-85
[6]  
Zastavnyi V. P.(2006)* St. Petersburg Math. J. 17 593-633
[7]  
Vinogradov O. L.(1937)Sharp Jackson-type inequalities for approximations of classes of convolutions by entire functions of exponential type Dokl. Akad. Nauk SSSR 17 451-453
[8]  
Akhiezer N. I.(1938)On best approximation of a class of continuous periodic functions Dokl. Akad. Nauk SSSR 18 241-244
[9]  
Akhiezer N. I.(1938)On best approximation of analytic functions Dokl. Akad. Nauk SSSR 18 245-249
[10]  
Kreĭn M. G.(1974)On the theory of best approximation of periodic functions Math. Notes 16 1008-1014