Growth and Distortion Results for a Class of Biholomorphic Mapping and Extremal Problem with Parametric Representation in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n$$\end{document}

被引:2
作者
Zhenhan Tu
Liangpeng Xiong
机构
[1] Wuhan University,School of Mathematics and Statistics
关键词
Distortion estimates; Extreme points; Growth theorems; Starlike mappings; Support points; 32H02; 30C45;
D O I
10.1007/s11785-018-00881-z
中图分类号
学科分类号
摘要
Let S^gα,β(Bn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{\mathcal {S}}_g^{\alpha , \beta }(\mathbb {B}^n)$$\end{document} be a subclass of normalized biholomorphic mappings defined on the unit ball in Cn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n,$$\end{document} which is closely related to the starlike mappings. Firstly, we obtain the growth theorem for S^gα,β(Bn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{\mathcal {S}}_g^{\alpha , \beta }(\mathbb {B}^n)$$\end{document}. Secondly, we apply the growth theorem and a new type of the boundary Schwarz lemma to establish the distortion theorems of the Fréchet-derivative type and the Jacobi-determinant type for this subclass, and the distortion theorems with g-starlike mapping (resp. starlike mapping) are partly established also. At last, we study the Kirwan and Pell type results for the compact set of mappings which have g-parametric representation associated with a modified Roper–Suffridge extension operator, which extend some earlier related results.
引用
收藏
页码:2747 / 2769
页数:22
相关论文
共 60 条
[1]  
Barnard R(1994)A distortion theorem for biholomorphic mappings in Trans. Am. Math. Soc. 344 907-924
[2]  
FitzGerald C(2015)Shearing process and an example of a bounded support function in Comput. Methods Funct. Theory 15 151-157
[3]  
Gong S(2013)An extension operator associated with certain g-loewner chains Taiwan. J. Math. 17 1819-1837
[4]  
Bracci F(2015)Extreme points, support points and Complex Anal. Oper. Theory 9 1781-1799
[5]  
Chirilă T(2014)-loewner chains associated with Roper–Suffridge and Pfaltzgraff–Suffridge extension operators Mathematica (Cluj) 56 21-40
[6]  
Chirilă T(2010)Extreme points and support points for mappings with J. Math. Anal. Appl. 369 437-442
[7]  
Chirilă T(2002)-parametric representation in Can. J. Math. 54 324-351
[8]  
Hamada H(2012)Distortion theorems for convex mappings on homogeneous balls Sci. China Math. 55 1353-1366
[9]  
Kohr G(2014)Parametric representation of univalent mappings in several complex variables Math. Ann. 359 61-99
[10]  
Chu CH(2017)Extreme points, support points and the Loewner variation in several complex variables J. Math. Anal. Appl. 454 1085-1105