Some Graphs with Double Domination Subdivision Number Three

被引:0
作者
Haoli Wang
Xirong Xu
Yuansheng Yang
Baosheng Zhang
机构
[1] College of Computer and Information Engineering,Department of Computer Science
[2] Tianjin Normal University,undefined
[3] Dalian University of Technology,undefined
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
Double domination; Double domination number; Double domination subdivision number;
D O I
暂无
中图分类号
学科分类号
摘要
A subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subseteq V(G)}$$\end{document} is a double dominating set of G if S dominates every vertex of G at least twice. The double domination numberdd(G) is the minimum cardinality of a double dominating set of G. The double domination subdivision number sddd(G) is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the double domination number. Atapour et al. (Discret Appl Math, 155:1700–1707, 2007) posed an open problem: Prove or disprove: let G be a connected graph with no isolated vertices, then 1 ≤ sddd(G) ≤ 2. In this paper, we disprove the problem by constructing some connected graphs with no isolated vertices and double domination subdivision number three.
引用
收藏
页码:247 / 251
页数:4
相关论文
共 16 条
[1]  
Atapour M.(2007)Characterization of double domination subdivision number of trees Discret. Appl. Math 155 1700-1707
[2]  
Khodkar A.(2004)Domination subdivision numbers in graphs Util. Math. 66 195-209
[3]  
Sheikholeslami S.M.(2008)Disproof of a conjecture on the subdivision domination number of a graph Graphs Combin. 24 309-312
[4]  
Favaron O.(2000)Double domination in graphs Ars Combin. 55 201-213
[5]  
Haynes T.W.(2001)Domination subdivision numbers Discuss. Math. Graph Theory 21 239-253
[6]  
Hedetniemi S.T.(undefined)undefined undefined undefined undefined-undefined
[7]  
Favaron O.(undefined)undefined undefined undefined undefined-undefined
[8]  
Karami H.(undefined)undefined undefined undefined undefined-undefined
[9]  
Sheikholeslami S.M.(undefined)undefined undefined undefined undefined-undefined
[10]  
Harary F.(undefined)undefined undefined undefined undefined-undefined