Special odd Lie superalgebras in prime characteristic

被引:0
作者
WenDe Liu
JiXia Yuan
机构
[1] Harbin Institute of Technology,Department of Mathematics
[2] Harbin Normal University,School of Mathematical Sciences
来源
Science China Mathematics | 2012年 / 55卷
关键词
Lie superalgebra; associative form; cohomology; 17B50; 17B40;
D O I
暂无
中图分类号
学科分类号
摘要
Let g be a finite dimensional special odd Lie superalgebra over an algebraically closed field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document} of characteristic p > 3. The sufficient and necessary condition is given for g possessing a nondegenerate associative form and in this case the second cohomology group H2(g, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^2 (\mathfrak{g},\mathbb{F})$\end{document}) is completely determined.
引用
收藏
页码:567 / 576
页数:9
相关论文
共 20 条
[1]  
Chiu S.(1992)Central extensions and J Algebra 149 46-67
[2]  
Farnsteiner R.(1986)( Algebra Groups Geom 3 431-455
[3]  
Farnsteiner R.(1987)) of the graded Lie algebras of Cartan type Canad J Math 39 1078-1106
[4]  
Farnsteiner R.(1986)Central extensions and invariant forms of graded Lie algebras Trans Amer Math Soc 295 417-427
[5]  
Fu J. Y.(2006)Dual space derivations and Commun Algebra 34 107-128
[6]  
Zhang Q. C.(1977)( Adv Math 26 8-96
[7]  
Jiang C. P.(1998), Adv Math 139 1-55
[8]  
Kac V. G.(2009)) of graded Lie algebras Commun Contemp Math 11 523-546
[9]  
Kac V. G.(2004)The associative forms of Cartan type Lie algebras J Algebra 273 176-205
[10]  
Liu W.D.(2000)The Cartan-type modular Lie superalgebra Chin Adv Math 29 65-70