On Radial Schrödinger Operators with a Coulomb Potential

被引:0
作者
Jan Dereziński
Serge Richard
机构
[1] University of Warsaw,Department of Mathematical Methods in Physics, Faculty of Physics
[2] Nagoya University,Graduate School of Mathematics
来源
Annales Henri Poincaré | 2018年 / 19卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a thorough analysis of one-dimensional Schrödinger operators whose potential is a linear combination of the Coulomb term 1 / r and the centrifugal term 1/r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/r^2$$\end{document}. We allow both coupling constants to be complex. Using natural boundary conditions at 0, a two-parameter holomorphic family of closed operators on L2(R+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathbb {R}}_+)$$\end{document} is introduced. We call them the Whittaker operators, since in the mathematical literature their eigenvalue equation is called the Whittaker equation. Spectral and scattering theory for Whittaker operators is studied. Whittaker operators appear in quantum mechanics as the radial part of the Schrödinger operator with a Coulomb potential.
引用
收藏
页码:2869 / 2917
页数:48
相关论文
共 29 条
  • [1] Bruneau L(2011)Homogeneous Schrödinger operators on half-line Ann. Henri Poincaré 12 547-590
  • [2] Dereziński J(1985)Deficiency indices and singular boundary conditions in quantum mechanics J. Math. Phys. 26 2520-2528
  • [3] Georgescu V(2017)On Schrödinger operators with inverse square potentials on the half-line Ann. Henri Poincaré 18 869-928
  • [4] Bulla W(1964)Asymptotic convergence and the Coulomb interaction J. Math. Phys. 5 729-738
  • [5] Gesztesy F(1980)On the one-dimensional Coulomb Hamiltonian J. Phys. A 13 867-875
  • [6] Dereziński J(1980)On the high-energy behaviour of scattering phase shifts for Coulomb-like potentials J. Phys. A 13 2659-2671
  • [7] Richard S(1976)Perturbation of the Laplacian by Coulomb like potentials Indiana Univ. Math. J. 25 1105-1126
  • [8] Dollard JD(1974)On the connectedness structure of the Coulomb S-matrix Commun. Math. Phys. 35 181-191
  • [9] Gesztesy F(1984)Analytical structure and properties of Coulomb wave functions for real and complex energies Ann. Phys. 155 461-493
  • [10] Gesztesy F(2018)Eigenvalues of Robin Laplacians in infinite sectors Math. Nachr. 291 928-965