Linear bounds for the normal covering number of the symmetric and alternating groups

被引:0
作者
Daniela Bubboloni
Cheryl E. Praeger
Pablo Spiga
机构
[1] University of Firenze,Dipartimento di Matematica e Informatica
[2] The University of Western Australia,Centre for Mathematics of Symmetry and Computation, School of Physics, Mathematics, and Computing
[3] University of Milano-Bicocca,Dipartimento di Matematica e Applicazioni
来源
Monatshefte für Mathematik | 2020年 / 191卷
关键词
Symmetric groups; Conjugacy classes; Normal coverings; Partitions; 20B30; 20F05;
D O I
暂无
中图分类号
学科分类号
摘要
The normal covering number γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (G)$$\end{document} of a finite, non-cyclic group G is the minimum number of proper subgroups such that each element of G lies in some conjugate of one of these subgroups. We find lower bounds linear in n for γ(Sn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (S_n)$$\end{document}, when n is even, and for γ(An)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (A_n)$$\end{document}, when n is odd.
引用
收藏
页码:229 / 247
页数:18
相关论文
共 30 条
  • [1] Brandl R(2001)Polynomials with roots mod J. Group Theory 4 233-239
  • [2] Bubboloni D(2013) for all primes Algebra Number Theory 7 2085-2102
  • [3] Hupp I(2011)Normal coverings of linear groups J. Comb. Theory Ser. A 118 2000-2024
  • [4] Britnell JR(2013)Normal coverings of the alternating and symmetric groups J. Algebra 390 199-215
  • [5] Maróti A(2014)Normal coverings and pairwise generation of finite alternating and symmetric groups IJGT 3 57-75
  • [6] Bubboloni D(2012)Conjectures on the normal covering number of finite alternating and symmetric groups J. Number Theory 132 2922-2946
  • [7] Praeger CE(2016)Compositions of Manuscr. Math. 151 477-492
  • [8] Bubboloni D(2002) satisfying some coprimality conditions Pac. J. Math. 207 61-75
  • [9] Praeger CE(2015)Intersective J. Pure Appl. Algebra 219 308-330
  • [10] Spiga P(2016) polynomials with few irreducible factors J. Algebra 454 233-251