Solvability of boundary value problems of nonlinear fractional differential equations

被引:0
作者
Weiqi Chen
Yige Zhao
机构
[1] Shandong University,School of Economics
[2] Shandong University,School of Physical Education
[3] Shandong University,School of Control Science and Engineering
来源
Advances in Difference Equations | / 2015卷
关键词
fractional differential equation; boundary value problem; positive solution; fractional Green’s function; fixed point theorem; lower and upper solution method; 34A08; 34B18;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of multiple positive solutions for the nonlinear fractional differential equation boundary value problem D0+αu(t)+f(t,u(t))=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha}_{0^{+}}u(t)+f(t,u(t))=0 $\end{document}, 0<t<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< t<1$\end{document}, u(0)=u(1)=u′(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u(0)=u(1)=u'(0)=0$\end{document}, where 2<α≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2<\alpha\leq3$\end{document} is a real number, D0+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha}_{0^{+}}$\end{document} is the Riemann-Liouville fractional derivative. By the properties of the Green’s function, the lower and upper solution method and the Leggett-Williams fixed point theorem, some new existence criteria are established. As applications, examples are presented to illustrate the main results.
引用
收藏
相关论文
共 70 条
[1]  
Agarwal RP(2002)Formulation of Euler-Lagrange equations for fractional variational problems J. Math. Anal. Appl. 272 368-379
[2]  
Delbosco D(1996)Existence and uniqueness for a nonlinear fractional differential equation J. Math. Anal. Appl. 204 609-625
[3]  
Rodino L(2000)The existence of a positive solution for nonlinear fractional differential equation J. Math. Anal. Appl. 252 804-812
[4]  
Zhang S(2003)Existence of positive solutions for some class of nonlinear fractional equation J. Math. Anal. Appl. 278 136-148
[5]  
Zhang S(2006)Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method Appl. Math. Comput. 180 700-706
[6]  
Jafari H(2009)Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation Nonlinear Anal. 71 4676-4688
[7]  
Daftardar-Gejji V(2011)Existence of solutions for a singular system of nonlinear fractional differential equations Comput. Math. Appl. 62 1370-1378
[8]  
Xu X(2012)Uniqueness of positive solutions for boundary value problems of singular fractional differential equations Inverse Probl. Sci. Eng. 20 299-309
[9]  
Jiang D(2011)Positive solutions for a coupled system of nonlinear differential equations of mixed fractional orders Adv. Differ. Equ. 2011 1312-1324
[10]  
Yuan C(2011)Theory of fractional hybrid differential equations Comput. Math. Appl. 62 710-719