The Diamond Integral on Time Scales

被引:0
作者
Artur M. C. Brito da Cruz
Natália Martins
Delfim F. M. Torres
机构
[1] Escola Superior de Tecnologia de Setúbal,Department of Mathematics, CIDMA–Center for Research and Development in Mathematics and Applications
[2] University of Aveiro,undefined
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2015年 / 38卷
关键词
Diamond integral; Time scales; Integral inequalities; 26D15; 26E70;
D O I
暂无
中图分类号
学科分类号
摘要
We define a more general type of integral on time scales. The new diamond integral is a refined version of the diamond-alpha integral introduced in 2006 by Sheng et al. A mean value theorem for the diamond integral is proved, as well as versions of Holder’s, Cauchy–Schwarz’s, and Minkowski’s inequalities.
引用
收藏
页码:1453 / 1462
页数:9
相关论文
共 22 条
[1]  
Hilger S(1990)Analysis on measure chains—a unified approach to continuous and discrete calculus Results Math. 18 18-56
[2]  
Sheng Q(2006)An exploration of combined dynamic derivatives on time scales and their applications Nonlinear Anal. Real World Appl. 7 395-413
[3]  
Fadag M(2013)Symmetric differentiation on time scales Appl. Math. Lett. 26 264-269
[4]  
Henderson J(2007)Notes on the diamond- J. Math. Anal. Appl. 326 228-241
[5]  
Davis JM(2007) dynamic derivative on time scales Electron. J. Qual. Theory Differ. Equ. 17 13-481
[6]  
Brito da Cruz AMC(2009)Hybrid approximations via second order combined dynamic derivatives on time scales Dynam. Syst. Appl. 18 469-101
[7]  
Martins N(2009)On the diamond-alpha Riemann integral and mean value theorems on time scales Int. J. Math. Stat. 5 92-11
[8]  
Torres DFM(2010)Diamond-alpha polynomial series on time scales An. Univ. Craiova Ser. Mat. Inform. 37 1-2250
[9]  
Rogers JW(2012)Hölder’s and Hardy’s two dimensional diamond-alpha inequalities on time scales Comput. Math. Appl. 64 2241-522
[10]  
Sheng Q(2010)The Math. Inequal. Appl. 13 511-undefined