The quantum Fokker-Planck equation of stochastic inflation

被引:0
作者
Hael Collins
Richard Holman
Tereza Vardanyan
机构
[1] Carnegie Mellon University,Department of Physics
[2] Minerva Schools at KGI,College of Computational Sciences
来源
Journal of High Energy Physics | / 2017卷
关键词
Cosmology of Theories beyond the SM; Effective Field Theories; Stochastic Processes;
D O I
暂无
中图分类号
学科分类号
摘要
We derive the stochastic description of a massless, interacting scalar field in de Sitter space directly from the quantum theory. This is done by showing that the density matrix for the effective theory of the long wavelength fluctuations of the field obeys a quantum version of the Fokker-Planck equation. This equation has a simple connection with the standard Fokker-Planck equation of the classical stochastic theory, which can be generalised to any order in perturbation theory. We illustrate this formalism in detail for the theory of a massless scalar field with a quartic interaction.
引用
收藏
相关论文
共 53 条
  • [1] Starobinsky AA(1986)Stochastic de Sitter (inflationary) stage in the early universe Lect. Notes Phys. 246 107-undefined
  • [2] Ford LH(1985)Quantum instability of de Sitter Space-time Phys. Rev. D 31 710-undefined
  • [3] Ford LH(1986)Global symmetry breaking in two-dimensional flat space-time and in de Sitter space-time Phys. Rev. D 33 2833-undefined
  • [4] Vilenkin A(1986)Quantum instability of de Sitter space Phys. Rev. Lett. 56 1319-undefined
  • [5] Antoniadis I(2010)Super-Hubble de Sitter fluctuations and the dynamical RG JCAP 03 033-undefined
  • [6] Iliopoulos J(2010)Infrared effects in inflationary correlation functions Class. Quant. Grav. 27 124005-undefined
  • [7] Tomaras TN(2008)Stochastic Inflationary Scalar Electrodynamics Annals Phys. 323 1324-undefined
  • [8] Burgess CP(2008)Two loop stress-energy tensor for inflationary scalar electrodynamics Phys. Rev. D 78 101-undefined
  • [9] Leblond L(2011)The zeta-zeta correlator is time dependent Phys. Lett. B 694 035-undefined
  • [10] Holman R(2010)Stochastic growth of quantum fluctuations during slow-roll inflation Phys. Rev. D 82 045-undefined