Gradient estimates for the elliptic and parabolic Lichnerowicz equations on compact manifolds

被引:0
作者
Xianfa Song
Lin Zhao
机构
[1] Tianjin University,Department of Mathematics, School of Science
[2] Tsinghua University,Department of Mathematical Sciences
来源
Zeitschrift für angewandte Mathematik und Physik | 2010年 / 61卷
关键词
53C21; 35K05; Lichnerowicz equation; Gradient estimate; Harnack differential inequality;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3. Denote \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta_g=-{\rm div}_g\nabla}$$\end{document} the Laplace–Beltrami operator. We establish some local gradient estimates for the positive solutions of the Lichnerowicz equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta_gu(x)+h(x)u(x)=A(x)u^p(x)+\frac{B(x)}{u^q(x)}$$\end{document} on (M, g). Here, p, q ≥ 0, A(x), B(x) and h(x) are smooth functions on (M, g). We also derive the Harnack differential inequality for the positive solutions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t(x,t)+\Delta_gu(x,t)+h(x)u(x,t)=A(x)u^p(x,t)+\frac{B(x)}{u^q(x,t)}$$\end{document} on (M, g) with initial data u(x, 0) > 0.
引用
收藏
页码:655 / 662
页数:7
相关论文
共 24 条
[1]  
Calabi E.(1957)An extension of E. Hopf’s maximum principle with application to Riemannian geometry Duke J. Math. 25 45-56
[2]  
Choquet-Bruhat Y.(2006)The Einstein-scalar field constraints on asymptotically Euclidean manifolds Chin. Ann. Math. Ser. B 27 31-52
[3]  
Isenberg J.(2007)The constraint equations for the Einstein-scalar field system on compact manifolds Class. Quantum Grav. 24 809-828
[4]  
Pollack D.(1999)The Problem of uniqueness of the limit in a semilinear heat equation Commun. Part. Differ. Equ. 24 2147-2172
[5]  
Choquet-Bruhat Y.(2008)A variational analysis of Einstein-Scalar field Lichnerowicz equations on compact Riemannian manifolds Commun. Math. Phys. 278 117-132
[6]  
Isenberg J.(1995)Constant mean curvature solutions of the Einstein constraint equations on closed manifolds Class. Quantum Grav. 12 2249-2274
[7]  
Pollack D.(2005)A gluing constructions for non-vacuum solutions of the Einstein constraint equations Adv. Theor. Math. Phys. 9 129-172
[8]  
Cortázar C.(2008)Properties of positive solutions to an elliptic equation with negative exponent J. Funct. Anal. 254 1058-1087
[9]  
del Pino M.(2008)Gradient estimate for the degenerate parabolic equation J. Differ. Equ. 244 1157-1177
[10]  
Elgueta M.(1988) = Δ Acta Math. 160 19-64