Modular-invariant large-N completion of an integrated correlator in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 supersymmetric Yang-Mills theory

被引:0
作者
Daniele Dorigoni
Michael B. Green
Congkao Wen
Haitian Xie
机构
[1] Durham University,Centre for Particle Theory & Department of Mathematical Sciences
[2] Department of Applied Mathematics and Theoretical Physics,Centre for Theoretical Physics, Department of Physics and Astronomy
[3] Queen Mary University of London,undefined
关键词
1/; Expansion; AdS-CFT Correspondence; Duality in Gauge Field Theories; Supersymmetric Gauge Theory;
D O I
10.1007/JHEP04(2023)114
中图分类号
学科分类号
摘要
The use of supersymmetric localisation has recently led to modular covariant expressions for certain integrated correlators of half-BPS operators in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 supersymmetric Yang-Mills theory with a general classical gauge group GN. Here we determine generating functions that encode such integrated correlators for any classical gauge group and provide a proof of previously conjectured formulae. This gives a systematic understanding of the relation between properties of these correlators at finite N and their expansions at large N. In particular, it determines a duality-invariant non-perturbative completion of the large-N expansion in terms of a sum of novel non-holomorphic modular functions. These functions are exponentially suppressed at large N and have the form of a sum of contributions from coincident (p, q)-string world-sheet instantons.
引用
收藏
相关论文
共 52 条
[1]  
Pestun V(2012) = 4 Commun. Math. Phys. 313 71-undefined
[2]  
Nekrasov NA(2003) = 4 Adv. Theor. Math. Phys. 7 831-undefined
[3]  
Montonen C(1977) = 4 Phys. Lett. B 72 117-undefined
[4]  
Olive DI(1999) = 4 Phys. Lett. B 448 37-undefined
[5]  
Gonzalez-Rey F(1999) = 4 Nucl. Phys. B 557 355-undefined
[6]  
Park IY(2000) × Nucl. Phys. B 584 216-undefined
[7]  
Schalm K(2000) = 4 Phys. Lett. B 482 309-undefined
[8]  
Eden B(2012)undefined Nucl. Phys. B 862 193-undefined
[9]  
Bianchi M(2020)undefined JHEP 04 193-undefined
[10]  
Kovacs S(2022)undefined J. Phys. A 55 443011-undefined