Automorphisms of Nonnormal Toric Varieties

被引:0
作者
I. A. Boldyrev
S. A. Gaifullin
机构
[1] Lomonosov Moscow State University,
[2] Moscow Center of Fundamental and Applied Mathematics,undefined
[3] National Research University Higher School of Economics,undefined
来源
Mathematical Notes | 2021年 / 110卷
关键词
toric variety; automorphisms; flexible variety; rigid variety;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:872 / 886
页数:14
相关论文
共 23 条
[1]  
Arzhantsev I.(2013)Flexible varieties and automorphism groups Duke Math. J. 162 767-823
[2]  
Flenner H.(2012)Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity Sb. Math. 203 923-949
[3]  
Kaliman S.(2013)Flexibility of affine cones over del Pezzo surfaces degree 4 and 5 Funct. Anal. Appl. 47 284-289
[4]  
Kutzschebauch F.(2017)Flexibility of affine horospherical varieties of semisimple groups Sb. Math. 208 285-310
[5]  
Zaidenberg M.(2019)Flexibility of normal affine horospherical varieties Proc. Amer. Math. Soc. 147 3317-3330
[6]  
Arzhantsev I.(2017)The automorphism group of a rigid affine variety Math. Nachr. 290 662-671
[7]  
Zaidenberg M. G.(2005)On the uniqueness of Affine Algebraic Geometry 369 97-111
[8]  
Kuyumzhiyan K. G.(2008)-actions on affine surfaces Integer Points in Polyhedra-Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics 452 147-162
[9]  
Perepechko A. Yu.(1970)Saturation points on faces of a rational polyhedral cone Ann. Sci. École Norm. Sup. (4) 3 507-588
[10]  
Shafarevich A. A.(2010)Sous-groupes algébriques de rang maximum du groupe de Cremona Transform. Groups 15 389-425