机构:
Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
Wang, Liguang
[1
]
Yang, Xueyan
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
Yang, Xueyan
[2
,3
]
Li, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
Li, Lei
[2
,3
]
机构:
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
2-local maps;
Isometries;
Algebra isomorphisms;
Function algebras;
LINEAR ISOMETRIES;
BANACH-ALGEBRAS;
AUTOMORPHISMS;
ISOMORPHISMS;
DERIVATIONS;
D O I:
10.1007/s43034-024-00366-5
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study several variants of 2-local isometries (or algebra isomorphisms) on some function algebras, e.g., Lipschitz algebras, algebras of differential functions, algebras of absolutely continuous functions and algebras of continuous functions with bounded variation. A typical result is this: if phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is surjective map between function algebra mentioned above with the property that for any pair f, g there is an algebra isomorphism phi f,g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _{f,g}$$\end{document} such that phi(f)phi(g)=phi f,g(fg)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (f)\phi (g)=\phi _{f,g}(fg)$$\end{document}, then phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} can be written as a weighted composition operator.