Variants of 2-local maps on function algebras

被引:0
作者
Wang, Liguang [1 ]
Yang, Xueyan [2 ,3 ]
Li, Lei [2 ,3 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
2-local maps; Isometries; Algebra isomorphisms; Function algebras; LINEAR ISOMETRIES; BANACH-ALGEBRAS; AUTOMORPHISMS; ISOMORPHISMS; DERIVATIONS;
D O I
10.1007/s43034-024-00366-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study several variants of 2-local isometries (or algebra isomorphisms) on some function algebras, e.g., Lipschitz algebras, algebras of differential functions, algebras of absolutely continuous functions and algebras of continuous functions with bounded variation. A typical result is this: if phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is surjective map between function algebra mentioned above with the property that for any pair f, g there is an algebra isomorphism phi f,g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _{f,g}$$\end{document} such that phi(f)phi(g)=phi f,g(fg)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (f)\phi (g)=\phi _{f,g}(fg)$$\end{document}, then phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} can be written as a weighted composition operator.
引用
收藏
页数:11
相关论文
共 25 条
  • [1] ISOMORPHISMS OF BV(σ) SPACES
    Al-Shakarchi, Shaymaa
    Doust, Ian
    [J]. OPERATORS AND MATRICES, 2021, 15 (04): : 1581 - 1596
  • [2] 2-Local derivations and automorphisms on B(H)
    Ayupov, Sh.
    Kudaybergenov, K.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 15 - 18
  • [3] Isomorphisms of AC(σ) spaces
    Doust, Ian
    Leinert, Michael
    [J]. STUDIA MATHEMATICA, 2015, 228 (01) : 7 - 31
  • [4] Hatori O, 2018, ACTA SCI MATH, V84, P151, DOI 10.14232/actasm-017-558-6
  • [5] Approximate Local Isometries on Spaces of Absolutely Continuous Functions
    Hosseini, Maliheh
    Jimenez-Vargas, A.
    [J]. RESULTS IN MATHEMATICS, 2021, 76 (02)
  • [6] 2-Local isometries between spaces of functions of bounded variation
    Hosseini, Maliheh
    [J]. POSITIVITY, 2020, 24 (04) : 1101 - 1109
  • [7] Weighted Composition Operators on C(X) and Lipc(X, α)
    Hosseini, Maliheh
    Sady, Fereshteh
    [J]. TOKYO JOURNAL OF MATHEMATICS, 2012, 35 (01) : 71 - 84
  • [8] MULTIPLICATIVE FUNCTIONALS ON ALGEBRAS OF DIFFERENTIABLE FUNCTIONS
    JARAMILLO, JA
    [J]. ARCHIV DER MATHEMATIK, 1992, 58 (04) : 384 - 387
  • [9] ISOMETRIES BETWEEN FUNCTION-SPACES
    JAROSZ, K
    PATHAK, VD
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 305 (01) : 193 - 206
  • [10] 2-Local standard isometries on vector-valued Lipschitz function spaces
    Jimenez-Vargas, Antonio
    Li, Lei
    Peralta, Antonio M.
    Wang, Liguang
    Wang, Ya-Shu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (02) : 1287 - 1298