Traces and extensions of certain weighted Sobolev spaces on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document} and Besov functions on Ahlfors regular compact subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}

被引:0
作者
Jeff Lindquist
Nageswari Shanmugalingam
机构
[1] University of Cincinnati,Department of Mathematical Sciences
关键词
Besov space; Weighted Sobolev space; Ahlfors regular sets; Sierpiński carpet; Gsket; von Koch snowflake; Trace; Extension; Primary 46E35; Secondary 31E05;
D O I
10.1007/s40627-021-00064-1
中图分类号
学科分类号
摘要
The focus of this paper is on Ahlfors Q-regular compact sets E⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\subset \mathbb {R}^n$$\end{document} such that, for each Q-2<α≤0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q-2<\alpha \le 0$$\end{document}, the weighted measure μα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\alpha }$$\end{document} given by integrating the density ω(x)=dist(x,E)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (x)=\text {dist}(x, E)^\alpha $$\end{document} yields a Muckenhoupt Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_p$$\end{document}-weight in a ball B containing E. For such sets E we show the existence of a bounded linear trace operator acting from W1,p(B,μα)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,p}(B,\mu _\alpha )$$\end{document} to Bp,pθ(E,HQ|E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^\theta _{p,p}(E, \mathcal {H}^Q\vert _E)$$\end{document} when 0<θ<1-α+n-Qp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\theta <1-\tfrac{\alpha +n-Q}{p}$$\end{document}, and the existence of a bounded linear extension operator from Bp,pθ(E,HQ|E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^\theta _{p,p}(E, \mathcal {H}^Q\vert _E)$$\end{document} to W1,p(B,μα)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,p}(B, \mu _\alpha )$$\end{document} when 1-α+n-Qp≤θ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-\tfrac{\alpha +n-Q}{p}\le \theta <1$$\end{document}. We illustrate these results with E as the Sierpiński carpet, the Sierpiński gasket, and the von Koch snowflake.
引用
收藏
相关论文
共 37 条
[1]  
Ahlfors LV(1963)Quasiconformal reflections Acta Math. 109 291-301
[2]  
Barton A(2018)Trace and extension theorems relating Besov spaces to weighted averaged Sobolev spaces Math. Inequal. Appl. 21 817-870
[3]  
Besov OV(1959)On some families of functional spaces. Imbedding and extension theorems (Russian) Dokl. Akad. Nauk SSSR 126 1163-1165
[4]  
Björn J(2007)Poincaré inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces J. Math. Anal. Appl. 332 190-208
[5]  
Shanmugalingam N(2017)Harmonic measure on sets of codimension larger than one C. R. Math. Acad. Sci. Paris 355 406-410
[6]  
David G(2019)Muckenhoupt Potential Anal. 50 83-105
[7]  
Feneuil J(2010)-properties of distance functions and applications to Hardy-Sobolev-type inequalities Math. Nachr. 283 215-231
[8]  
Mayboroda S(2013)Interpolation properties of Besov spaces defined on metric spaces Forum Math. 25 787-819
[9]  
Dyda B(1997)Characterizations of Besov and Triebel–Lizorkin spaces on metric measure spaces J. Funct. Anal. 143 221-246
[10]  
Ihnatsyeva L(1987)Traces of Sobolev functions on fractal type sets and characterization of extension domains Ann. Acad. Sci. Fenn. Ser. A I Math. 12 217-227