Stratified equatorial flows in the β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-plane approximation with a free surface

被引:0
作者
Fahe Miao
Michal Fečkan
JinRong Wang
机构
[1] Guizhou University,Department of Mathematics
[2] Comenius University in Bratislava,Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics
[3] Slovak Academy of Sciences,Mathematical Institute
关键词
Azimuthal flows; Exact solution; Variable density; Short-wavelength method; 35Q31; 76B15; 83C15;
D O I
10.1007/s00605-022-01685-2
中图分类号
学科分类号
摘要
We investigate the exact solutions to the governing equations for the equatorial flows with the associated free surface and rigid bottom boundary conditions in the β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-plane approximation which incorporates two considerations of the density stratification. Compared to the spherical coordinates and the cylindrical coordinates, the employment of the β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-plane approximation admits that the density can be provided generally. Utilizing the implicit theorem, we present the Bernoulli relation between the pressure imposed on the free surface and the resulting distortion of the surface and we obtain that this relation exhibits the expected monotonicity properties. Finally, we prove that certain flows established by the exact solutions are stable via the short-wavelength stability method and the specific assumption of the density distribution.
引用
收藏
页码:315 / 334
页数:19
相关论文
共 54 条
[1]  
Chu J(2019)Exact solution and instability for geophysical trapped waves at arbitrary latitude Discrete Continu. Dyn. Syst. 39 4399-4414
[2]  
Ionescu-Kruse D(2019)Exact solution and instability for geophysical waves with centripetal forces and at arbitrary latitude J. Math. Fluid Mech. 21 16-2810
[3]  
Yang Y(2013)Instability of some equatorially trapped waves J. Geophys. Res. Oceans 118 2802-175
[4]  
Chu J(2013)Some three-dimensional nonlinear equatorial flows J. Phys. Oceanogr. 43 165-358
[5]  
Ionescu-Kruse D(2015)The dynamics of waves interacting with the equatorial undercurrent Geophys. Astrophys. Fluid Dyn. 109 311-1447
[6]  
Yang Y(2016)An exact, steady, purely azimuthal equatorial flow with a free surface J. Phys. Oceanogr. 46 1417-48
[7]  
Constantin A(2017)A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific equatorial undercurrent and thermocline Phys. Fluids 29 056604-2042
[8]  
Germain P(2019)Equatorial wave–current interactions Commun. Math. Phys. 370 1-2206
[9]  
Constantin A(2019)On the nonlinear, three-dimensional structure of equatorial oceanic flows J. Phys. Oceanogr. 49 2029-21
[10]  
Constantin A(1991)Instability criteria for the flow of an inviscid incompressible fluid Phys. Rev. Lett. 66 2204-349