Exponents, Symmetry Groups and Classification of Operator Fractional Brownian Motions

被引:0
作者
Gustavo Didier
Vladas Pipiras
机构
[1] Tulane University,Mathematics Department
[2] UNC-Chapel Hill,Dept. of Statistics and Operations Research
[3] Instituto Superior Técnico,CEMAT
来源
Journal of Theoretical Probability | 2012年 / 25卷
关键词
Operator fractional Brownian motions; Spectral domain representations; Operator self-similarity; Exponents; Symmetry groups; Orthogonal matrices; Commutativity; 60G18; 60G15;
D O I
暂无
中图分类号
学科分类号
摘要
Operator fractional Brownian motions (OFBMs) are zero mean, operator self-similar (o.s.s.) Gaussian processes with stationary increments. They generalize univariate fractional Brownian motions to the multivariate context. It is well-known that the so-called symmetry group of an o.s.s. process is conjugate to subgroups of the orthogonal group. Moreover, by a celebrated result of Hudson and Mason, the set of all exponents of an operator self-similar process can be related to the tangent space of its symmetry group.
引用
收藏
页码:353 / 395
页数:42
相关论文
共 30 条
[1]  
Becker-Kern P.(2008)Parameter estimation of selfsimilarity exponents J. Multivar. Anal. 99 117-140
[2]  
Pap G.(1966)Convergence of types in Z. Wahrscheinlichkeitstheor. Verw. Geb. 5 175-179
[3]  
Billingsley P.(2011)-spaces Bernoulli 17 1-33
[4]  
Didier G.(1981)Integral representations and properties of operator fractional Brownian motions J. Multivar. Anal. 11 434-447
[5]  
Pipiras V.(1982)Operator-stable laws Trans. Am. Math. Soc. 273 281-297
[6]  
Hudson W.(1981)Operator-self-similar processes in a finite-dimensional space Stoch. Process. Appl. 12 73-84
[7]  
Mason J.(2009)Operator self-similar stochastic processes in Stat. Probab. Lett. 79 2415-2421
[8]  
Hudson W.(1992)Covariance function of vector self-similar processes Ann. Probab. 20 563-578
[9]  
Mason J.(1996)Symmetry groups of Markov processes Nagoya J. Math. 142 161-181
[10]  
Laha R.G.(1994)Limit theorems related to a class of operator-self-similar processes Stoch. Process. Appl. 54 139-163