A systematic study on weak Galerkin finite-element method for second-order wave equation

被引:0
作者
Puspendu Jana
Naresh Kumar
Bhupen Deka
机构
[1] Indian Institute of Technology,Department of Mathematics
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Wave equation; Finite-element method; Weak Galerkin method; Semidiscrete and fully discrete schemes; Optimal error estimates; 65M15; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we present a systematic numerical study for second-order linear wave equation using weak Galerkin finite-element methods (WG-FEMs). Various degrees of polynomials are used to construct weak Galerkin finite-element spaces. Error estimates in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm as well as in discrete H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} norm have been established for general weak Galerkin space (Pk(K),Pj(∂K),[Pl(K)]2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\textbf {P}}}_k ({\mathcal {K}}), {{\textbf {P}}}_j (\partial {\mathcal {K}}), [{{\textbf {P}}}_l ({\mathcal {K}})]^2),$$\end{document} where k,j&l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k, j \& l$$\end{document} are non-negative integers with k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 1$$\end{document}. Time discretization for fully discrete scheme is based on second order in time Newmark scheme. Finally, we provide several numerical results to confirm theoretical findings.
引用
收藏
相关论文
共 109 条
[41]  
Schötzau D(2016)A priori Int J Numer Anal Model 13 118-undefined
[42]  
Huang Y(2019) error estimates for Galerkin approximations to parabolic partial differential equations Appl Math Lett 90 undefined-undefined
[43]  
Li J(undefined)The weak Galerkin method for linear hyperbolic equation undefined undefined undefined-undefined
[44]  
Li D(undefined)Weak Galerkin finite element method for second order parabolic equations undefined undefined undefined-undefined
[45]  
Karakashian O(undefined)Weak Galerkin finite element method with second-order accuracy in time for parabolic problems undefined undefined undefined-undefined
[46]  
Makridakis C(undefined)undefined undefined undefined undefined-undefined
[47]  
Kim S(undefined)undefined undefined undefined undefined-undefined
[48]  
Lim H(undefined)undefined undefined undefined undefined-undefined
[49]  
Li QH(undefined)undefined undefined undefined undefined-undefined
[50]  
Wang J(undefined)undefined undefined undefined undefined-undefined