A systematic study on weak Galerkin finite-element method for second-order wave equation

被引:0
作者
Puspendu Jana
Naresh Kumar
Bhupen Deka
机构
[1] Indian Institute of Technology,Department of Mathematics
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Wave equation; Finite-element method; Weak Galerkin method; Semidiscrete and fully discrete schemes; Optimal error estimates; 65M15; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we present a systematic numerical study for second-order linear wave equation using weak Galerkin finite-element methods (WG-FEMs). Various degrees of polynomials are used to construct weak Galerkin finite-element spaces. Error estimates in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm as well as in discrete H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} norm have been established for general weak Galerkin space (Pk(K),Pj(∂K),[Pl(K)]2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\textbf {P}}}_k ({\mathcal {K}}), {{\textbf {P}}}_j (\partial {\mathcal {K}}), [{{\textbf {P}}}_l ({\mathcal {K}})]^2),$$\end{document} where k,j&l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k, j \& l$$\end{document} are non-negative integers with k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 1$$\end{document}. Time discretization for fully discrete scheme is based on second order in time Newmark scheme. Finally, we provide several numerical results to confirm theoretical findings.
引用
收藏
相关论文
共 109 条
[1]  
Adjerid S(2011)A discontinuous Galerkin method for the wave equation Comput Methods Appl Mech Engrg 200 837-849
[2]  
Temimi H(2012)A local discontinuous Galerkin method for the second-order wave equation Comput Methods Appl Mech Engrg 209 129-143
[3]  
Baccouch M(1976)Error estimates for finite element methods for second order hyperbolic equations SIAM J Numer Anal 13 564-576
[4]  
Baker GA(1980)On the Math Comp 34 401-424
[5]  
Baker GA(2018) convergence of Galerkin approximations for second-order hyperbolic equations Geophys J Internat 213 637-659
[6]  
Dougalis VA(2021)Hybridizable discontinuous Galerkin method for the 2-D frequency-domain elastic wave equations J Sci Comput 87 1-30
[7]  
Bonnasse-Gahot M(2013)Convergence analysis of hybrid high-order methods for the wave equation SIAM J Numer Anal 51 2166-2188
[8]  
Calandra H(2014)A Hybridizable Discontinuous Galerkin Method for the Helmholtz Equation with High Wave Number J Comput Phys 272 88-107
[9]  
Diaz J(2014)Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media Math Comp 83 65-85
[10]  
Lanteri S(2016)Uniform-in-time superconvergenceof the HDG methods for the acoustic wave equation ESAIM Math Model Numer Anal 50 635-650