New solutions of shear waves in piezoelectric cubic crystals

被引:0
|
作者
A. A. Zakharenko
机构
[1] International Institute of Zakharenko Waves,
关键词
New shear-horizontal surface acoustic waves (SH-SAWs); Strong piezoelectric effect; Piezoelectric cubic crystals; Solutions for latent waves; O735;
D O I
暂无
中图分类号
学科分类号
摘要
Acoustic wave propagation in piezoelectric crystals of classes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 4$$ \end{document}3m and 23 is studied. The crystals Tl3VS4 and Tl3TaSe4 (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 4$$ \end{document}3m) of the Chalcogenide family and the crystal Bi12TiO20 (23) possess strong piezoelectric effect. Because the surface Bleustein-Gulyaev waves cannot exist in piezoelectric cubic crystals, it was concluded that new solutions for shear-horizontal surface acoustic waves (SH-SAWs) are found in the monocrystals using different electrical boundary conditions such as electrically “short” and “open” free-surfaces for the unique [101] direction of wave propagation. For the crystal Tl3TaSe4 with coefficient of electromechanical coupling (CEMC) Ke2=e2/(C×g)∼1/3, the phase velocity Vph for the new SH-SAWs can be calculated with the following formula: Vph=(Va+Vt)/2, where Vt is the speed of bulk SH-wave, Vt=Vt4(1+Ke2)1/2, Va=aKVt4, aK=2[Kte(1+Ke2)1/2−Ke2]1/2, and Vt4=(C44/ρ)1/2. It was found that the CEMC K2 evaluation for Tl3TaSe4 gave the value of K2=2(Vf−Vm)/Vf∼0.047 (∼4.7%), where Vf∼848 m/s and Vm∼828 m/s are the new-SAW velocities for the free and metallized surfaces, respectively. This high value of K2(Tl3TaSe4) is significantly greater than K2(Tl3VS4)∼3% and about five times that of K2(Bi12TiO20).
引用
收藏
页码:669 / 674
页数:5
相关论文
共 50 条
  • [41] SURFACE ELASTIC WAVES IN CUBIC CRYSTALS
    GAZIS, DC
    HERMAN, R
    WALLIS, RF
    PHYSICAL REVIEW, 1960, 119 (02): : 533 - 544
  • [42] New class of shear surface magnetosonic waves in antiferromagnetic crystals
    Tarasenko, S.V.
    Zhurnal Eksperimental'noj i Teoreticheskoj Fiziki, 2002, 121 (03): : 663 - 678
  • [43] Propagation of acoustic waves in piezoelectric crystals
    Blasiak, Malgorzata
    Kotowski, Romuald
    PRZEGLAD ELEKTROTECHNICZNY, 2009, 85 (12): : 40 - 43
  • [44] Shear Surface Acoustic Waves in Twinned Piezoelectric Crystals of the m2 Symmetry Class
    Furs, A. N.
    CRYSTALLOGRAPHY REPORTS, 2019, 64 (04) : 631 - 635
  • [45] Shear Waves In a Cubic Nonlinear Inhomogeneous Resonator
    Krit, Timofey B.
    Andreev, Valery G.
    Sapozhnikov, Oleg A.
    NONLINEAR ACOUSTICS: STATE-OF-THE-ART AND PERSPECTIVES (ISNA 19), 2012, 1474 : 212 - 215
  • [46] STIMULATED RAMAN EFFECT IN PIEZOELECTRIC CUBIC-CRYSTALS
    WENK, J
    MERTEN, L
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1979, 93 (01): : 175 - 181
  • [47] Propagation of Waves in Micropolar Thermoelastic Cubic Crystals
    Kumar, Rajneesh
    Partap, Geeta
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2010, 4 (01): : 107 - 123
  • [48] ELASTIC WAVES IN CRYSTALS OF CUBIC AND TETRAGONAL SYMMETRY
    IOSILEVS.YA
    SOVIET PHYSICS CRYSTALLOGRAPHY, USSR, 1967, 12 (01): : 57 - &
  • [49] Antiplane shear crack in hexagonal piezoelectric crystals
    Tupholme, GE
    MATERIALS LETTERS, 1999, 39 (04) : 215 - 220
  • [50] LIGHT-DIFFRACTION BY BLEUSTEIN-GULYAEV SURFACE ACOUSTIC-WAVES IN PIEZOELECTRIC CUBIC-CRYSTALS
    BRIGHT, VM
    HUNT, WD
    JOURNAL OF APPLIED PHYSICS, 1990, 68 (05) : 1985 - 1992