On the minimax principle for Coulomb–Dirac operators

被引:0
作者
Sergey Morozov
David Müller
机构
[1] Mathematisches Institut,
[2] LMU München,undefined
来源
Mathematische Zeitschrift | 2015年 / 280卷
关键词
Minimax principle; Dirac operator; Form perturbation; Primary 49R05; Secondary 81Q10; 46N50;
D O I
暂无
中图分类号
学科分类号
摘要
Let B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document} be a self-adjoint operator constructed as a form perturbation of a self-adjoint operator Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}. Assuming that B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document} has a gap (a,b)⊂R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a,b)\subset {\mathbb {R}}$$\end{document} in the essential spectrum, we prove a minimax principle for eigenvalues of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document} in (a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a,b)$$\end{document} using a suitable orthogonal decomposition of the form domain of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}. This allows us to justify two minimax characterisations of eigenvalues in the gap of three-dimensional Dirac operators with potentials which may have a strong Coulomb singularity.
引用
收藏
页码:733 / 747
页数:14
相关论文
共 17 条
[1]  
Datta SN(1988)The minimax technique in relativistic hartree-fock calculations Pramana 30 387-405
[2]  
Devaiah G(2000)On the eigenvalues of operators with gaps. Application to Dirac operators J. Funct. Anal. 174 208-226
[3]  
Dolbeault J(2000)Variational characterization for eigenvalues of Dirac operators Calc. Var. Part. Differ. Equ. 10 321-347
[4]  
Esteban MJ(1999)A minimax principle for the eigenvalues in spectral gaps J. Lond. Math. Soc. 60 490-500
[5]  
Séré E(1999)A minimax principle for eigenvalues in spectral gaps: dirac operators with Coulomb potentials Doc. Math. 4 275-283
[6]  
Dolbeault J(1976)Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms Commun. Math. Phys. 48 235-247
[7]  
Esteban MJ(1972)Distinguished selfadjoint extensions of Dirac operators Math. Z. 129 335-349
[8]  
Séré E(1986)Minimax principle for the Dirac equation Phys. Rev. Lett. 57 1091-1094
[9]  
Griesemer M(1998)Strict positivity of a relativistic Hamiltonian due to Brown and Ravenhall Bull. Lond. Math. Soc. 30 283-290
[10]  
Siedentop H(1975)Distinguished self-adjoint extensions of Dirac operators constructed by means of cut-off potentials Math. Z. 141 93-98