Quadrilaterals, extremal quasiconformal extensions and Hamilton sequences

被引:0
作者
Zhi-guo Chen
Xue-liang Zheng
Guo-wu Yao
机构
[1] Zhejiang University,Department of Mathematics
[2] Taizhou College,Department of Mathematics
[3] Tsinghua University,Department of Mathematical Sciences
来源
Applied Mathematics-A Journal of Chinese Universities | 2010年 / 25卷
关键词
Extremal quasiconformal mapping; quasisymmetric mapping; Hamilton sequence; substantial boundary point; 30C62; 30C70;
D O I
暂无
中图分类号
学科分类号
摘要
The relationship between Strebel boundary dilatation of a quasisymmetric function h of the unit circle and the dilatation indicated by the change in the modules of the quadrilaterals with vertices on the circle intrigues many mathematicians. It had been a conjecture for some time that the dilatations K0(h) and K1(h) of h are equal before Anderson and Hinkkanen disproved this by constructing concrete counterexamples. The independent work of Wu and of Yang completely characterizes the condition for K0(h) = K1(h) when h has no substantial boundary point. In this paper, we give a necessary and sufficient condition to determine the equality for h admitting a substantial boundary point.
引用
收藏
页码:217 / 226
页数:9
相关论文
共 26 条
  • [1] Anderson J.(1995)Quadrilaterals and extremal quasiconformal extensions Comment Math Helv 70 455-474
  • [2] Hinkkanen A.(1997)A remark on “An approximation condition and extremal quasiconformal extensions” Chinese Sci Bull 42 1765-1767
  • [3] Chen J.(2002)Moduli of quadrilaterals and substantial boundary points Chinese Ann Math Ser A 23 197-204
  • [4] Chen Z.(1999)Isometrically embedded polydisks in infinite dimensional Teichmüller spaces J Geom Anal 9 51-71
  • [5] Chen J.(1986)On the set of substantial boundary points for extremal quasiconformal mappings Complex Variables Theory Appl 6 323-335
  • [6] Zhu H.(1981)Über extremale quasiconforme Abbildungen Comment Math Helv 56 558-580
  • [7] Liang X.(1986)Quasiconformal mappings with free boundary components Ann Acad Sci Fenn Math 6 323-335
  • [8] Earle C.(2003)Polygon quasiconformal maps and Grunsky inequalities J Anal Math 90 175-196
  • [9] Li Z.(2000)Drei Funktionale eines Quasikreises Ann Acad Sci Fenn Math 25 413-415
  • [10] Fehlmann R.(2000)A class of quasisymmetric mappings with substantial points Chinese Sci Bull 45 313-316