Approximating the Cumulant Generating Function of Triangles in the Erdös–Rényi Random Graph

被引:0
|
作者
Cristian Giardinà
Claudio Giberti
Elena Magnanini
机构
[1] University of Modena and Reggio Emilia,
[2] University of Modena and Reggio Emilia,undefined
[3] University of Padova,undefined
来源
Journal of Statistical Physics | 2021年 / 182卷
关键词
Erdös–Rényi random graph; Edge-triangle model; Rare events simulations; Phase transition; Graphs limits; Ensemble equivalence;
D O I
暂无
中图分类号
学科分类号
摘要
We study the pressure of the “edge-triangle model”, which is equivalent to the cumulant generating function of triangles in the Erdös–Rényi random graph. The investigation involves a population dynamics method on finite graphs of increasing volume, as well as a discretization of the graphon variational problem arising in the infinite volume limit. As a result, we locate a curve in the parameter space where a one-step replica symmetry breaking transition occurs. Sampling a large graph in the broken symmetry phase is well described by a graphon with a structure very close to the one of an equi-bipartite graph.
引用
收藏
相关论文
共 4 条
  • [1] Approximating the Cumulant Generating Function of Triangles in the Erdos-Renyi Random Graph
    Giardina, Cristian
    Giberti, Claudio
    Magnanini, Elena
    JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (02)
  • [2] Large Deviations for Subcritical Bootstrap Percolation on the Erdős–Rényi Graph
    Omer Angel
    Brett Kolesnik
    Journal of Statistical Physics, 2021, 185
  • [3] Chemically inspired Erdős-Rényi hypergraphs
    Garcia-Chung, Angel
    Bermudez-Montana, Marisol
    Stadler, Peter F.
    Jost, Juergen
    Restrepo, Guillermo
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2024, 62 (06) : 1357 - 1383
  • [4] Phase Transition in Inhomogenous Erdős-Rényi Random Graphs via Tree Counting
    Ghurumuruhan Ganesan
    Sankhya A, 2018, 80 (1): : 1 - 27