Gaussian curvature on hyperelliptic Riemann surfaces

被引:0
作者
ABEL CASTORENA
机构
[1] (Universidad Nacional Autónoma de México Campus Morelia),Centro de Ciencias Matemáticas
来源
Proceedings - Mathematical Sciences | 2014年 / 124卷
关键词
Hyperelliptic curve; Weierstrass points; Gaussian curvature.; Primary: 14H55; Secondary: 30F30.;
D O I
暂无
中图分类号
学科分类号
摘要
Let C be a compact Riemann surface of genus g ≥ 1, ω1, ..., ωg be a basis of holomorphic 1-forms on C and let H=(hij)i,j=1g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H=(h_{ij})_{i,j=1}^g$\end{document} be a positive definite Hermitian matrix. It is well known that the metric defined as dsH2=∑i,j=1ghijωi⊗ωj¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {d}s_H^2=\sum _{i,j=1}^gh_{ij}\omega _i\otimes \overline {\omega _j}$\end{document} is a Kähler metric on C of non-positive curvature. Let KH : C → ℝ be the Gaussian curvature of this metric. When C is hyperelliptic we show that the hyperelliptic Weierstrass points are non-degenerated critical points of KH of Morse index +2. In the particular case when H is the g × g identity matrix, we give a criteria to find local minima for KH and we give examples of hyperelliptic curves where the curvature function KH is a Morse function.
引用
收藏
页码:155 / 167
页数:12
相关论文
共 50 条
  • [41] Gaussian-curvature-derived invariants for isometry
    WeiGuo Cao
    Ping Hu
    YuJie Liu
    Ming Gong
    Hua Li
    Science China Information Sciences, 2013, 56 : 1 - 12
  • [42] Moduli spaces of Riemann surfaces as Hurwitz spaces
    Bianchi, Andrea
    ADVANCES IN MATHEMATICS, 2023, 430
  • [43] Flatness of Gaussian curvature and area of ideal triangles
    Ruggiero R.O.
    Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 1997, 28 (1) : 73 - 87
  • [44] Gaussian-curvature-derived invariants for isometry
    CAO WeiGuo
    HU Ping
    LIU YuJie
    GONG Ming
    LI Hua
    Science China(Information Sciences), 2013, 56 (09) : 219 - 230
  • [45] LOCAL WEIGHTED GAUSSIAN CURVATURE FOR IMAGE PROCESSING
    Gong, Yuanhao
    Sbalzarini, Ivo F.
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 534 - 538
  • [46] Gaussian curvature: A growth parameter for biological structures
    Giuliani, D
    MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (11-12) : 1375 - 1384
  • [47] Gaussian Curvature Effects on Graphene Quantum Dots
    de-la-Huerta-Sainz, Sergio
    Ballesteros, Angel
    Cordero, Nicolas A.
    NANOMATERIALS, 2023, 13 (01)
  • [48] Curvature formulas for implicit curves and surfaces
    Goldman, R
    COMPUTER AIDED GEOMETRIC DESIGN, 2005, 22 (07) : 632 - 658
  • [49] Isoperimetric inequalities on surfaces of constant curvature
    Ku, HT
    Ku, MC
    Zhang, XM
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (06): : 1162 - 1187
  • [50] A Hilbert-type theorem for spacelike surfaces with constant Gaussian curvature in H2 x R1
    Albujer, Alma L.
    Alias, Luis J.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2009, 40 (04): : 465 - 478