Gaussian curvature on hyperelliptic Riemann surfaces

被引:0
作者
ABEL CASTORENA
机构
[1] (Universidad Nacional Autónoma de México Campus Morelia),Centro de Ciencias Matemáticas
来源
Proceedings - Mathematical Sciences | 2014年 / 124卷
关键词
Hyperelliptic curve; Weierstrass points; Gaussian curvature.; Primary: 14H55; Secondary: 30F30.;
D O I
暂无
中图分类号
学科分类号
摘要
Let C be a compact Riemann surface of genus g ≥ 1, ω1, ..., ωg be a basis of holomorphic 1-forms on C and let H=(hij)i,j=1g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H=(h_{ij})_{i,j=1}^g$\end{document} be a positive definite Hermitian matrix. It is well known that the metric defined as dsH2=∑i,j=1ghijωi⊗ωj¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {d}s_H^2=\sum _{i,j=1}^gh_{ij}\omega _i\otimes \overline {\omega _j}$\end{document} is a Kähler metric on C of non-positive curvature. Let KH : C → ℝ be the Gaussian curvature of this metric. When C is hyperelliptic we show that the hyperelliptic Weierstrass points are non-degenerated critical points of KH of Morse index +2. In the particular case when H is the g × g identity matrix, we give a criteria to find local minima for KH and we give examples of hyperelliptic curves where the curvature function KH is a Morse function.
引用
收藏
页码:155 / 167
页数:12
相关论文
共 50 条
  • [31] Arakelov invariants of Riemann surfaces
    de Jong, R
    DOCUMENTA MATHEMATICA, 2005, 10 : 311 - 329
  • [32] An estimate for the Gaussian curvature of minimal surfaces in Rm whose Gauss map is ramified over a set of hyperplanes
    Pham Hoang Ha
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 32 : 130 - 138
  • [33] Evolution of hypersurfaces in RN by Gaussian curvature
    Marcati, Pierangelo
    Molinari, Manuela
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (02): : 119 - 132
  • [34] Mesh segmentation driven by Gaussian curvature
    Yamauchi, H
    Gumhold, S
    Zayer, R
    Seidel, HP
    VISUAL COMPUTER, 2005, 21 (8-10) : 659 - 668
  • [35] Graph Regularisation Using Gaussian Curvature
    ElGhawalby, Hewayda
    Hancock, Edwin R.
    GRAPH-BASED REPRESENTATIONS IN PATTERN RECOGNITION, PROCEEDINGS, 2009, 5534 : 233 - 242
  • [36] Discrete schemes for Gaussian curvature and their convergence
    Xu, Zhiqiang
    Xu, Guoliang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (07) : 1187 - 1195
  • [37] Mesh segmentation driven by Gaussian curvature
    Hitoshi Yamauchi
    Stefan Gumhold
    Rhaleb Zayer
    Hans-Peter Seidel
    The Visual Computer, 2005, 21 : 659 - 668
  • [38] ON GAUSSIAN CURVATURE EQUATION IN R2 WITH PRESCRIBED NONPOSITIVE CURVATURE
    Chen, Huyuan
    Ye, Dong
    Zhou, Feng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (06) : 3201 - 3214
  • [39] Prescribed Curvature Flow on Surfaces
    Ho, Pak Tung
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (05) : 1517 - 1541
  • [40] Gaussian-curvature-derived invariants for isometry
    Cao WeiGuo
    Hu Ping
    Liu YuJie
    Gong Ming
    Li Hua
    SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (09) : 1 - 12