A Numerical Study on Premixed Turbulent Planar Ammonia/Air and Ammonia/Hydrogen/Air Flames: An Analysis on Flame Displacement Speed and Burning Velocity

被引:0
作者
Parsa Tamadonfar
Shervin Karimkashi
Ossi Kaario
Ville Vuorinen
机构
[1] Aalto University,Department of Mechanical Engineering, School of Engineering
关键词
Premixed turbulent flames; Ammonia/hydrogen/air flames; Quasi direct numerical simulation; Flame displacement speed; Local equivalence ratio; Diffusion flux;
D O I
暂无
中图分类号
学科分类号
摘要
The economic storage and transportation of ammonia (NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NH}_3$$\end{document}), and its capability to be thermally decomposed to hydrogen (H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {H}_2$$\end{document}) make it a potential carbon-free synthetic fuel for the future. To comprehend the fundamental characteristics of NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NH}_3$$\end{document} as a primary fuel enriched with H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {H}_2$$\end{document} under low turbulent premixed flame conditions, three quasi direct numerical simulations (quasi-DNS) with detailed chemistry and the mixture-averaged transport model are conducted under decaying turbulence herein. The Karlovitz number is fixed to 4.28 for all the test conditions. The blending ratio (α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}), specifying the hydrogen concentration in the ammonia/hydrogen mixture, varies from 0.0 to 0.6. The results reveal that the mean value of the density-weighted flame displacement speed (Sd∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\textrm{d}}^{*}$$\end{document}) is similar to (higher than) the unstrained premixed laminar burning velocity (SL0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\textrm{L}}^{0}$$\end{document}) for NH3/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NH}_3/$$\end{document}air flame (NH3/H2/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NH}_3/\hbox {H}_2/$$\end{document}air flames). Furthermore, the performance of two extrapolation relations for estimating Sd∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\textrm{d}}^{*}$$\end{document} as linear and non-linear functions of flame front curvature is discussed thoroughly. The performances of both models are almost similar when evaluating the data near the leading edge of the flame. However, the non-linear one offers more accurate results near the trailing edge of the flame. The results show that the mean flame stretch factor increases with increasing the blending ratio, suggesting that the mean flamelet consumption velocity deviates from SL0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\textrm{L}}^{0}$$\end{document} by enriching the mixture with H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {H}_2$$\end{document}. The mean value of the local equivalence ratio (ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document}) for the turbulent NH3/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NH}_3/$$\end{document}air flame is almost equal to its laminar counterpart, while it deviates significantly for NH3/H2/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NH}_3/\hbox {H}_2/$$\end{document}air flames. In addition, the local equivalence ratio for the flame front with positive curvature values is higher than the negatively curved regions for NH3/H2/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NH}_3/\hbox {H}_2/$$\end{document}air flames due to H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {H}_2$$\end{document} preferential diffusion. Furthermore, the results indicate that hydrogen is consumed faster in positively curved regions compared to the negatively curved zones due to enhanced reaction rates of specific chemical reactions.
引用
收藏
页码:717 / 741
页数:24
相关论文
共 265 条
[1]  
Aspden AJ(2011)Lewis number effects in distributed flames Proc. Combust. Inst. 33 1473-1480
[2]  
Day MS(2011)Turbulence-flame interactions in lean premixed hydrogen: transition to the distributed burning regime J. Fluid Mech. 680 287-320
[3]  
Bell JB(2016)Three-dimensional direct numerical simulation of turbulent lean premixed methane combustion with detailed kinetics Combust. Flame 166 266-283
[4]  
Aspden AJ(2007)Numerical simulation of Lewis number effects on lean premixed turbulent flames Proc. Combust. Inst. 31 1309-1317
[5]  
Day MS(2005)Paradigms in turbulent combustion research Proc. Combust. Inst. 30 21-42
[6]  
Bell JB(1998)Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion Proc. Combust. Inst. 27 917-925
[7]  
Aspden AJ(1991)Some applications of Kolmogorov’s turbulence research in the field of combustion Proc. R. Soc. A 434 217-240
[8]  
Day MS(2020)The relation between flame surface area and turbulent burning velocity in statistically planar turbulent stratified flames Phys. Fluids 32 2231-2239
[9]  
Bell JB(2005)Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime Phys. Fluids 17 489-507
[10]  
Bell JB(2014)Streamline segment statistics of premixed flames with nonunity Lewis numbers Phys. Rev. E. 89 155-174