Sparse Proteomics Analysis – a compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data

被引:0
作者
Tim O. F. Conrad
Martin Genzel
Nada Cvetkovic
Niklas Wulkow
Alexander Leichtle
Jan Vybiral
Gitta Kutyniok
Christof Schütte
机构
[1] Freie Universität Berlin,Department of Mathematics
[2] Arnimallee 6,Department of Mathematics
[3] Technische Universität Berlin,Department of Mathematical Analysis
[4] Düsternbrooker Weg 20,undefined
[5] Center of Laboratory Medicine,undefined
[6] Inselspital - Bern University Hospital,undefined
[7] Düsternbrooker Weg 20,undefined
[8] Charles University,undefined
[9] Düsternbrooker Weg 20,undefined
[10] Zuse Institute Berlin,undefined
[11] Takustr. 7,undefined
来源
BMC Bioinformatics | / 18卷
关键词
Machine learning; Feature selection; Classification; Compressed sensing; Sparsity; Proteomics; Mass spectrometry; Clinical data; Biomarker;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] A bioinformatics approach for mass spectrometry data processing: Applications to proteomics and small molecule analysis
    Sonderegger, M
    Staniszewski, K
    Meyers, A
    Siuzdak, G
    SPECTROSCOPY-AN INTERNATIONAL JOURNAL, 2002, 16 (02): : 81 - 87
  • [42] Comparison of classification methods that combine clinical data and high-dimensional mass spectrometry data
    Truntzer, Caroline
    Mostacci, Elise
    Jeannin, Aline
    Petit, Jean-Michel
    Ducoroy, Patrick
    Cardot, Herve
    BMC BIOINFORMATICS, 2014, 15
  • [43] Comparison of classification methods that combine clinical data and high-dimensional mass spectrometry data
    Caroline Truntzer
    Elise Mostacci
    Aline Jeannin
    Jean-Michel Petit
    Patrick Ducoroy
    Hervé Cardot
    BMC Bioinformatics, 15
  • [44] Clustering-based Sequential Feature Selection Approach for High Dimensional Data Classification
    Alimoussa, M.
    Porebski, A.
    Vandenbroucke, N.
    Thami, R. Oulad Haj
    El Fkihi, S.
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 4: VISAPP, 2021, : 122 - 132
  • [45] Membership-margin based feature selection for mixed type and high-dimensional data: Theory and applications
    Hedjazi, Lyamine
    Aguilar-Martin, Joseph
    Le Lann, Marie-Veronique
    Kempowsky-Hamon, Tatiana
    INFORMATION SCIENCES, 2015, 322 : 174 - 196
  • [47] A GA-based Feature Selection for High-dimensional Data Clustering
    Sun, Mei
    Xiong, Langhuan
    Sun, Haojun
    Jiang, Dazhi
    THIRD INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING, 2009, : 769 - 772
  • [48] A new improved filter-based feature selection model for high-dimensional data
    Munirathinam, Deepak Raj
    Ranganadhan, Mohanasundaram
    JOURNAL OF SUPERCOMPUTING, 2020, 76 (08) : 5745 - 5762
  • [49] A new improved filter-based feature selection model for high-dimensional data
    Deepak Raj Munirathinam
    Mohanasundaram Ranganadhan
    The Journal of Supercomputing, 2020, 76 : 5745 - 5762
  • [50] A Portmanteau Local Feature Discrimination Approach to the Classification with High-dimensional Matrix-variate Data
    Xu, Zengchao
    Luo, Shan
    Chen, Zehua
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (01): : 441 - 467