Sparse Proteomics Analysis – a compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data

被引:0
作者
Tim O. F. Conrad
Martin Genzel
Nada Cvetkovic
Niklas Wulkow
Alexander Leichtle
Jan Vybiral
Gitta Kutyniok
Christof Schütte
机构
[1] Freie Universität Berlin,Department of Mathematics
[2] Arnimallee 6,Department of Mathematics
[3] Technische Universität Berlin,Department of Mathematical Analysis
[4] Düsternbrooker Weg 20,undefined
[5] Center of Laboratory Medicine,undefined
[6] Inselspital - Bern University Hospital,undefined
[7] Düsternbrooker Weg 20,undefined
[8] Charles University,undefined
[9] Düsternbrooker Weg 20,undefined
[10] Zuse Institute Berlin,undefined
[11] Takustr. 7,undefined
来源
BMC Bioinformatics | / 18卷
关键词
Machine learning; Feature selection; Classification; Compressed sensing; Sparsity; Proteomics; Mass spectrometry; Clinical data; Biomarker;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] A Space Transformation-Based Multiform Approach for Multiobjective Feature Selection in High-Dimensional Classification
    Yu, Kunjie
    Sun, Shaoru
    Liang, Jing
    Chen, Ke
    Qu, Boyang
    Yue, Caitong
    Suganthan, Ponnuthurai Nagaratnam
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (12): : 7305 - 7317
  • [32] A high-dimensional classification approach based on class-dependent feature subspace
    Chen, Fuzan
    Wu, Harris
    Dou, Runliang
    Li, Minqiang
    INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 2017, 117 (10) : 2325 - 2339
  • [33] A Hybrid Feature Selection Method Based on Symmetrical Uncertainty and Support Vector Machine for High-Dimensional Data Classification
    Piao, Yongjun
    Ryu, Keun Ho
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2017, PT I, 2017, 10191 : 721 - 727
  • [34] A distributed approach for accelerating sparse matrix arithmetic operations for high-dimensional feature selection
    Antonela Tommasel
    Daniela Godoy
    Alejandro Zunino
    Cristian Mateos
    Knowledge and Information Systems, 2017, 51 : 459 - 497
  • [35] Enhanced NSGA-II-based feature selection method for high-dimensional classification
    Li, Min
    Ma, Huan
    Lv, Siyu
    Wang, Lei
    Deng, Shaobo
    INFORMATION SCIENCES, 2024, 663
  • [36] On sparse linear discriminant analysis algorithm for high-dimensional data classification
    Ng, Michael K.
    Liao, Li-Zhi
    Zhang, Leihong
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2011, 18 (02) : 223 - 235
  • [37] Grid-based Analysis of Tandem Mass Spectrometry Data in Clinical Proteomics
    Quandt, Andreas
    Hernandez, Patricia
    Kunzst, Peter
    Pautasso, Cesare
    Tuloup, Marc
    Hernandez, Celine
    Appel, Ron D.
    FROM GENES TO PERSONALIZED HEALTHCARE: GRID SOLUTIONS FOR THE LIFE SCIENCES, 2007, 126 : 13 - +
  • [38] FACO: A Novel Hybrid Feature Selection Algorithm for High-Dimensional Data Classification
    Popoola, Gideon
    Oyeniran, Kayode
    SOUTHEASTCON 2024, 2024, : 61 - 68
  • [39] A distributed approach for accelerating sparse matrix arithmetic operations for high-dimensional feature selection
    Tommasel, Antonela
    Godoy, Daniela
    Zunino, Alejandro
    Mateos, Cristian
    KNOWLEDGE AND INFORMATION SYSTEMS, 2017, 51 (02) : 459 - 497
  • [40] Concrete Crack Region Detection Based on High-Dimensional Image Feature Compressed Sensing
    Wang B.-X.
    Wang Z.
    Zhang Y.-F.
    Zhao W.-G.
    Li Y.-Q.
    Wang K.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2019, 39 (04): : 343 - 351