Sparse Proteomics Analysis – a compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data

被引:0
|
作者
Tim O. F. Conrad
Martin Genzel
Nada Cvetkovic
Niklas Wulkow
Alexander Leichtle
Jan Vybiral
Gitta Kutyniok
Christof Schütte
机构
[1] Freie Universität Berlin,Department of Mathematics
[2] Arnimallee 6,Department of Mathematics
[3] Technische Universität Berlin,Department of Mathematical Analysis
[4] Düsternbrooker Weg 20,undefined
[5] Center of Laboratory Medicine,undefined
[6] Inselspital - Bern University Hospital,undefined
[7] Düsternbrooker Weg 20,undefined
[8] Charles University,undefined
[9] Düsternbrooker Weg 20,undefined
[10] Zuse Institute Berlin,undefined
[11] Takustr. 7,undefined
来源
BMC Bioinformatics | / 18卷
关键词
Machine learning; Feature selection; Classification; Compressed sensing; Sparsity; Proteomics; Mass spectrometry; Clinical data; Biomarker;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Benchmark for filter methods for feature selection in high-dimensional classification data
    Bommert, Andrea
    Sun, Xudong
    Bischl, Bernd
    Rahnenfuehrer, Joerg
    Lang, Michel
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 143
  • [22] An iterative SVM approach to feature selection and classification in high-dimensional datasets
    Liu, Dehua
    Qian, Hui
    Dai, Guang
    Zhang, Zhihua
    PATTERN RECOGNITION, 2013, 46 (09) : 2531 - 2537
  • [23] Stability of feature selection in classification issues for high-dimensional correlated data
    Perthame, Emeline
    Friguet, Chloe
    Causeur, David
    STATISTICS AND COMPUTING, 2016, 26 (04) : 783 - 796
  • [24] Hellinger distance-based stable sparse feature selection for high-dimensional class-imbalanced data
    Fu, Guang-Hui
    Wu, Yuan-Jiao
    Zong, Min-Jie
    Pan, Jianxin
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [25] Feature selection based on dynamic crow search algorithm for high-dimensional data classification
    Jiang, He
    Yang, Ye
    Wan, Qiuying
    Dong, Yao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [26] Single Cell Proteomics for Molecular Targets in Lung Cancer: High-Dimensional Data Acquisition and Analysis
    Wang, Zheng
    Zhang, Xiaoju
    SINGLE CELL BIOMEDICINE, 2018, 1068 : 73 - 87
  • [27] Stability of feature selection in classification issues for high-dimensional correlated data
    Émeline Perthame
    Chloé Friguet
    David Causeur
    Statistics and Computing, 2016, 26 : 783 - 796
  • [28] A Cooperative Coevolutionary Approach to Discretization-Based Feature Selection for High-Dimensional Data
    Zhou, Yu
    Kang, Junhao
    Zhang, Xiao
    ENTROPY, 2020, 22 (06)
  • [29] Feature Subset Selection for High-Dimensional, Low Sampling Size Data Classification Using Ensemble Feature Selection With a Wrapper-Based Search
    Mandal, Ashis Kumar
    Nadim, MD.
    Saha, Hasi
    Sultana, Tangina
    Hossain, Md. Delowar
    Huh, Eui-Nam
    IEEE ACCESS, 2024, 12 : 62341 - 62357
  • [30] Feature selection based on geometric distance for high-dimensional data
    Lee, J. -H.
    Oh, S. -Y.
    ELECTRONICS LETTERS, 2016, 52 (06) : 473 - 474