Sparse Proteomics Analysis – a compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data

被引:0
|
作者
Tim O. F. Conrad
Martin Genzel
Nada Cvetkovic
Niklas Wulkow
Alexander Leichtle
Jan Vybiral
Gitta Kutyniok
Christof Schütte
机构
[1] Freie Universität Berlin,Department of Mathematics
[2] Arnimallee 6,Department of Mathematics
[3] Technische Universität Berlin,Department of Mathematical Analysis
[4] Düsternbrooker Weg 20,undefined
[5] Center of Laboratory Medicine,undefined
[6] Inselspital - Bern University Hospital,undefined
[7] Düsternbrooker Weg 20,undefined
[8] Charles University,undefined
[9] Düsternbrooker Weg 20,undefined
[10] Zuse Institute Berlin,undefined
[11] Takustr. 7,undefined
来源
BMC Bioinformatics | / 18卷
关键词
Machine learning; Feature selection; Classification; Compressed sensing; Sparsity; Proteomics; Mass spectrometry; Clinical data; Biomarker;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Sparse Proteomics Analysis - a compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data
    Conrad, Tim O. F.
    Genzel, Martin
    Cvetkovic, Nada
    Wulkow, Niklas
    Leichtle, Alexander
    Vybiral, Jan
    Kutyniok, Gitta
    Schuette, Christof
    BMC BIOINFORMATICS, 2017, 18
  • [2] Sparse Representation Based Feature Selection for Mass Spectrometry Data
    Ke, Jiqing
    Zhu, Lei
    Han, Bin
    Dai, Qi
    Wang, Yaojia
    Li, Lihua
    Xu, Shenhua
    Mou, Hanzhou
    Zheng, Zhiguo
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2010, : 57 - 62
  • [3] Swarm intelligence based wavelet coefficient feature selection for mass spectral classification: An application to proteomics data
    Zhao, Weixiang
    Davis, Cristina E.
    ANALYTICA CHIMICA ACTA, 2009, 651 (01) : 15 - 23
  • [4] A Sparse Genetic Algorithm to Solve Feature Selection of Sparse High-dimensional Data and Liver Totxicity Classification
    Liu, Yu
    Wang, Jie-Sheng
    Wen, Jia-Yao
    Li, Yu-Tong
    Yan, Peng-Guo
    ENGINEERING LETTERS, 2025, 33 (04) : 1045 - 1060
  • [5] Simultaneous Feature Selection and Classification for High-Dimensional Data
    Pai, Vriddhi
    Gupta, Subhash Chand
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT 2018), 2018, : 153 - 158
  • [6] Multistage feature selection approach for high-dimensional cancer data
    Alkuhlani, Alhasan
    Nassef, Mohammad
    Farag, Ibrahim
    SOFT COMPUTING, 2017, 21 (22) : 6895 - 6906
  • [7] FEATURE SELECTION FOR HIGH-DIMENSIONAL DATA ANALYSIS
    Verleysen, Michel
    ECTA 2011/FCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION THEORY AND APPLICATIONS AND INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION THEORY AND APPLICATIONS, 2011,
  • [8] Unsupervised Feature Selection Based on Ultrametricity and Sparse Training Data: A Case Study for the Classification of High-Dimensional Hyperspectral Data
    Bradley, Patrick Erik
    Keller, Sina
    Weinmann, Martin
    REMOTE SENSING, 2018, 10 (10)
  • [9] Genetic programming for feature construction and selection in classification on high-dimensional data
    Binh Tran
    Bing Xue
    Mengjie Zhang
    Memetic Computing, 2016, 8 : 3 - 15
  • [10] FEATURE SELECTION FOR HIGH-DIMENSIONAL DATA ANALYSIS
    Verleysen, Michel
    NCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION THEORY AND APPLICATIONS, 2011, : IS23 - IS25