Principal component analysis: Most favourite tool in chemometrics

被引:0
|
作者
Kumar K. [1 ]
机构
[1] Institute for Wine Analysis and Beverage Research, Hochschule, Geisenheim University, Geisenheim
关键词
Chemometrics; chromatography; classification; pattern recognition; principal component analysis;
D O I
10.1007/s12045-017-0523-9
中图分类号
学科分类号
摘要
Principal component analysis (PCA) is the most commonly used chemometric technique. It is an unsupervised pattern recognition technique. PCA has found applications in chemistry, biology, medicine and economics. The present work attempts to understand how PCA work and how can we interpret its results. © 2017, Indian Academy of Sciences.
引用
收藏
页码:747 / 759
页数:12
相关论文
共 50 条
  • [31] Decomposable Principal Component Analysis
    Wiesel, Ami
    Hero, Alfred O.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (11) : 4369 - 4377
  • [32] Classification of narcotics in solid mixtures using Principal Component Analysis and Raman spectroscopy
    Ryder, AG
    JOURNAL OF FORENSIC SCIENCES, 2002, 47 (02) : 275 - 284
  • [33] Geometrical Approximated Principal Component Analysis for Hyperspectral Image Analysis
    Machidon, Alina L.
    Del Frate, Fabio
    Picchiani, Matteo
    Machidon, Octavian M.
    Ogrutan, Petre L.
    REMOTE SENSING, 2020, 12 (11)
  • [34] Parameterized principal component analysis
    Gupta, Ajay
    Barbu, Adrian
    PATTERN RECOGNITION, 2018, 78 : 215 - 227
  • [35] Ensemble Principal Component Analysis
    Dorabiala, Olga
    Aravkin, Aleksandr Y.
    Kutz, J. Nathan
    IEEE ACCESS, 2024, 12 : 6663 - 6671
  • [37] Regularized Principal Component Analysis
    Yonathan AFLALO
    Ron KIMMEL
    Chinese Annals of Mathematics,Series B, 2017, (01) : 1 - 12
  • [38] Bayesian principal component analysis
    Nounou, MN
    Bakshi, BR
    Goel, PK
    Shen, XT
    JOURNAL OF CHEMOMETRICS, 2002, 16 (11) : 576 - 595
  • [39] A PRINCIPAL COMPONENT ANALYSIS FOR TREES
    Aydin, Burcu
    Pataki, Gabor
    Wang, Haonan
    Bullitt, Elizabeth
    Marron, J. S.
    ANNALS OF APPLIED STATISTICS, 2009, 3 (04) : 1597 - 1615
  • [40] Principal component spectral analysis
    Guo, Hao
    Marfurt, Kurt J.
    Liu, Jianlei
    GEOPHYSICS, 2009, 74 (04) : P35 - P43