Principal component analysis: Most favourite tool in chemometrics

被引:0
|
作者
Kumar K. [1 ]
机构
[1] Institute for Wine Analysis and Beverage Research, Hochschule, Geisenheim University, Geisenheim
关键词
Chemometrics; chromatography; classification; pattern recognition; principal component analysis;
D O I
10.1007/s12045-017-0523-9
中图分类号
学科分类号
摘要
Principal component analysis (PCA) is the most commonly used chemometric technique. It is an unsupervised pattern recognition technique. PCA has found applications in chemistry, biology, medicine and economics. The present work attempts to understand how PCA work and how can we interpret its results. © 2017, Indian Academy of Sciences.
引用
收藏
页码:747 / 759
页数:12
相关论文
共 50 条
  • [21] Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra
    Beattie, J. Renwick
    Esmonde-White, Francis W. L.
    APPLIED SPECTROSCOPY, 2021, 75 (04) : 361 - 375
  • [22] Spectroscopic techniques and chemometrics for ink analysis: Document analysis application
    Mirzanli, Ummugulsum
    Guzel, Pelin
    Akbay, Nuriye
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2025, 326
  • [23] Directed Principal Component Analysis
    Kao, Yi-Hao
    Van Roy, Benjamin
    OPERATIONS RESEARCH, 2014, 62 (04) : 957 - 972
  • [24] Abstract principal component analysis
    Li TianJiang
    Du Qiang
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (12) : 2783 - 2798
  • [25] Regularized Principal Component Analysis
    Aflalo, Yonathan
    Kimmel, Ron
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 1 - 12
  • [26] Probabilistic principal component analysis
    Tipping, ME
    Bishop, CM
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 611 - 622
  • [27] Abstract principal component analysis
    LI TianJiang
    DU Qiang
    Science China(Mathematics), 2013, 56 (12) : 2783 - 2798
  • [28] Abstract principal component analysis
    TianJiang Li
    Qiang Du
    Science China Mathematics, 2013, 56 : 2783 - 2798
  • [29] Universum Principal Component Analysis
    Chen, Xiao-hong
    Ma, Di
    INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT ENGINEERING (ITME 2014), 2014, : 236 - 241
  • [30] Principal Volatility Component Analysis
    Hu, Yu-Pin
    Tsay, Ruey S.
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2014, 32 (02) : 153 - 164