共 26 条
- [1] Arecchi FT(1985)Chaos and generalized multistability in quantum optics Phys. Scr. 9 85-92
- [2] Cândido MR(2017)Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction Nonlinearity 30 35-60
- [3] Llibre J(2018)Stability of periodic orbits in the averaging theory: Applications to Lorenz and Thomas’ differential systems Int. J. Bifurcat. Chaos 28 1830007-14
- [4] Novaes DD(2017)Stability and integrability aspects for the Maxwell-Bloch equations with the rotating wave approximation Regul. Chaotic Dyn. 22 109-121
- [5] Cândido MR(2017)The real-valued Maxwell-Bloch equations with controls: from a Hamilton-Poisson system to a chaotic one Int. J. Bifur. Chaos Appl. Sci. Engrg. 27 1750143, 17-571
- [6] Llibre J(2017)On a Hamilton-Poisson approach of the Maxwell-Bloch equations with a control Math. Phys. Anal. Geom. 20 Art. 20, 22-1412
- [7] Casu I(2015)Identifying weak foci and centers in Maxwell–Bloch system J. Math. Anal. Appl. 430 549-186
- [8] Lazureanu C(2014)Improving the averaging theory for computing periodic solutions of the differential equations Zeitschrift für angewandte Mathematik und Physik 66 1401-199
- [9] Lazureanu C(2018)Modulation instability and breathers synchronization of the nonlinear Schrö,dinger Maxwell–Bloch equation Appl. Math Lett. 79 182-14
- [10] Lazureanu C(2017)Dynamics of Peregrine combs and Peregrine walls in an inhomogeneous Hirota and Maxwell-Bloch system Commun. Nonlinear Sci. Numer. Simul. 47 190-undefined