New Symmetric Periodic Solutions for the Maxwell-Bloch Differential System

被引:0
作者
M. R. Cândido
J. Llibre
C. Valls
机构
[1] Universidade Estadual de Campinas,Departamento de Matemática
[2] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[3] Universidade de Lisboa,Departamento de Matemática, Instituto Superior Técnico
来源
Mathematical Physics, Analysis and Geometry | 2019年 / 22卷
关键词
Maxwell-Bloch; Averaging theory; Periodic solutions; Zero-Hopf bifurcations; 34C29; 37C27;
D O I
暂无
中图分类号
学科分类号
摘要
We provide sufficient conditions for the existence of a pair of symmetric periodic solutions in the Maxwell-Bloch differential equations modeling laser systems. These periodic solutions come from a zero-Hopf bifurcation studied using recent results in averaging theory.
引用
收藏
相关论文
共 26 条
  • [1] Arecchi FT(1985)Chaos and generalized multistability in quantum optics Phys. Scr. 9 85-92
  • [2] Cândido MR(2017)Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction Nonlinearity 30 35-60
  • [3] Llibre J(2018)Stability of periodic orbits in the averaging theory: Applications to Lorenz and Thomas’ differential systems Int. J. Bifurcat. Chaos 28 1830007-14
  • [4] Novaes DD(2017)Stability and integrability aspects for the Maxwell-Bloch equations with the rotating wave approximation Regul. Chaotic Dyn. 22 109-121
  • [5] Cândido MR(2017)The real-valued Maxwell-Bloch equations with controls: from a Hamilton-Poisson system to a chaotic one Int. J. Bifur. Chaos Appl. Sci. Engrg. 27 1750143, 17-571
  • [6] Llibre J(2017)On a Hamilton-Poisson approach of the Maxwell-Bloch equations with a control Math. Phys. Anal. Geom. 20 Art. 20, 22-1412
  • [7] Casu I(2015)Identifying weak foci and centers in Maxwell–Bloch system J. Math. Anal. Appl. 430 549-186
  • [8] Lazureanu C(2014)Improving the averaging theory for computing periodic solutions of the differential equations Zeitschrift für angewandte Mathematik und Physik 66 1401-199
  • [9] Lazureanu C(2018)Modulation instability and breathers synchronization of the nonlinear Schrö,dinger Maxwell–Bloch equation Appl. Math Lett. 79 182-14
  • [10] Lazureanu C(2017)Dynamics of Peregrine combs and Peregrine walls in an inhomogeneous Hirota and Maxwell-Bloch system Commun. Nonlinear Sci. Numer. Simul. 47 190-undefined