Fractional quiver W-algebras

被引:0
作者
Taro Kimura
Vasily Pestun
机构
[1] Keio University,
[2] IHES,undefined
来源
Letters in Mathematical Physics | 2018年 / 108卷
关键词
Supersymmetric gauge theories; Conformal field theories; W-algebras; Quantum groups; Quiver; Instanton; 81T60; 81R10; 14D21; 81R50;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce quiver gauge theory associated with the non-simply laced type fractional quiver and define fractional quiver W-algebras by using construction of Kimura and Pestun (Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1072-1; Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1073-0) with representation of fractional quivers.
引用
收藏
页码:2425 / 2451
页数:26
相关论文
共 50 条
[31]   FINITE-DIMENSIONAL REPRESENTATIONS OF MINIMAL NILPOTENT W-ALGEBRAS AND ZIGZAG ALGEBRAS [J].
Petukhov, Alexey .
REPRESENTATION THEORY, 2018, 22 :223-245
[32]   1-Dimensional representations and parabolic induction for W-algebras [J].
Losev, Ivan .
ADVANCES IN MATHEMATICS, 2011, 226 (06) :4841-4883
[33]   Modular linear differential equations of fourth order and minimal W-algebras [J].
Kawasetsu, Kazuya ;
Sakai, Yuichi .
JOURNAL OF ALGEBRA, 2018, 506 :445-488
[34]   W-algebras and the equivalence of bihamiltonian, Drinfeld-Sokolov and Dirac reductions [J].
Dinar, Yassir Ibrahim .
JOURNAL OF GEOMETRY AND PHYSICS, 2014, 84 :30-42
[35]   Non-linear realizations of superconformal and W-algebras as embeddings of strings [J].
Bellucci, S ;
Gribanov, V ;
Ivanov, E ;
Krivonos, S ;
Pashnev, A .
NUCLEAR PHYSICS B, 1998, 510 (1-2) :477-501
[36]   On the completeness of the canonical reductions from Kac-Moody to W-algebras [J].
McGlinn, W ;
ORaifeartaigh, L .
NUCLEAR PHYSICS B, 1997, 503 (03) :688-714
[37]   REPRESENTATION THEORY OF TYPE B AND C STANDARD LEVI W-ALGEBRAS [J].
Brown, Jonathan ;
Goodwin, Simon M. .
PACIFIC JOURNAL OF MATHEMATICS, 2014, 269 (01) :31-71
[38]   Whittaker categories and the minimal nilpotent finite W-algebras for sln+1 [J].
Liu, Genqiang ;
Li, Yang .
MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (04)
[39]   S 2-orbifolds of N=1 and N=2 superconformal vertex algebras and W-algebras [J].
Li, Hao ;
Milas, Antun ;
Wauchope, Josh .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (04) :1609-1638
[40]   THE DRINFELD-SOKOLOV HOLOMORPHIC BUNDLE AND CLASSICAL W-ALGEBRAS ON RIEMANN SURFACES [J].
ZUCCHINI, R .
JOURNAL OF GEOMETRY AND PHYSICS, 1995, 16 (03) :237-274