On the error-detecting performance of some classes of block codes

被引:1
作者
R. Dodunekova
S. M. Dodunekov
E. Nikolova
机构
[1] Chalmers University of Technology and Göteborg University,Institute of Mathematics and Informatics
[2] Bulgarian Academy of Sciences,undefined
[3] Bourgas Free University,undefined
关键词
System Theory; Block Code; Distance Distribution; Symmetric Distance; Nonlinear Code;
D O I
10.1007/s11122-005-0004-8
中图分类号
学科分类号
摘要
We establish the properness of some classes of binary block codes with symmetric distance distribution, including Kerdock codes and codes that satisfy the Grey-Rankin bound, as well as the properness of Preparata codes, thus augmenting the list of very few known proper nonlinear codes.
引用
收藏
页码:356 / 364
页数:8
相关论文
共 20 条
  • [1] Leung-Yan-Cheong S.K.(1979)On Some Properties of the Undetected Error Probability of Linear Codes IEEE Trans. Inf. Theory 25 110-112
  • [2] Barnes E.R.(1968)A Class of Optimum Nonlinear Double-Error-Correcting Codes Inf. Control 13 378-400
  • [3] Friedman D.U.(1972)A Class of Low-Rate Nonlinear Binary Codes Inf. Control 20 182-187
  • [4] Preparata F.P.(1971)Uniformly Packed Codes Probl. Peredachi Inf. 7 38-50
  • [5] Kerdock A.M.(1994)The ℤ IEEE Trans. Inf. Theory 40 301-319
  • [6] Semakov N.V.(1962)-Linearity of Kerdock, Preparata, Goethals, and Related Codes IEEE Trans. Inf. Theory 8 200-202
  • [7] Zinoviev V.A.(1955)Some Bounds for Error-Correcting Codes Proc. Glasgow Math. Assoc. 2 139-144
  • [8] Zaitsev G.V.(1956)The Closest Packing of Spherical Caps in Mathematika 3 15-24
  • [9] Hammons A.R.(1997) Dimensions J. Combin. Theory, Ser. A 78 280-291
  • [10] Kumar P.V.(1985)On the Minimal Points of Positive Definite Quadratic Forms Discrete Appl. Math. 10 455-461