A recurrent construction of irreducible polynomials of fixed degree over finite fields

被引:0
作者
Gohar M. Kyureghyan
Melsik K. Kyureghyan
机构
[1] University of Rostock,
[2] Institute for Informatics and Automation Problems,undefined
来源
Applicable Algebra in Engineering, Communication and Computing | 2022年 / 33卷
关键词
Finite fields; Composition method; Irreducible polynomials; Order of polynomial; Minimal polynomial; Square root;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider in detail the composition of an irreducible polynomial with X2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^2$$\end{document} and suggest a recurrent construction of irreducible polynomials of fixed degree over finite fields of odd characteristics. More precisely, given an irreducible polynomial of degree n and order 2rt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^rt$$\end{document} with t odd, the construction produces ordt(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ord_t(2)$$\end{document} irreducible polynomials of degree n and order t. The construction can be used for example to search irreducible polynomials with specific requirements on its coefficients.
引用
收藏
页码:163 / 171
页数:8
相关论文
共 50 条
  • [31] CAYLEY GRAPHS GENERATED BY SMALL DEGREE POLYNOMIALS OVER FINITE FIELDS
    Shparlinski, Igor F.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 376 - 381
  • [32] The Number of Irreducible Polynomials over a Finite Field : An Algebraic Proof
    Aditya, Ricky
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (04): : 110 - 115
  • [33] Local Permutation Polynomials of Maximum Degree Over Prime Finite Fields
    Gutierrez, Jaime
    Urroz, Jorge Jimenez
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (02)
  • [34] Counting irreducible polynomials with prescribed coefficients over a finite field
    Gao, Zhicheng
    Kuttner, Simon
    Wang, Qiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 80
  • [35] Counting irreducible binomials over finite fields
    Heyman, Randell
    Shparlinski, Igor E.
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 38 : 1 - 12
  • [36] Symmetric polynomials over finite fields
    Domokos, Matyas
    Miklosi, Botond
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89
  • [37] Factoring polynomials over finite fields
    Ozdemir, Enver
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (07) : 1517 - 1536
  • [38] Stable polynomials over finite fields
    Gomez-Perez, Domingo
    Nicolas, Alejandro P.
    Ostafe, Alina
    Sadornil, Daniel
    REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (02) : 523 - 535
  • [39] Dickson polynomials over finite fields
    Wang, Qiang
    Yucas, Joseph L.
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (04) : 814 - 831
  • [40] Explicit factorizations of cyclotomic polynomials over finite fields
    Wu, Hongfeng
    Zhu, Li
    Feng, Rongquan
    Yang, Siman
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 83 (01) : 197 - 217