A recurrent construction of irreducible polynomials of fixed degree over finite fields

被引:0
|
作者
Gohar M. Kyureghyan
Melsik K. Kyureghyan
机构
[1] University of Rostock,
[2] Institute for Informatics and Automation Problems,undefined
来源
Applicable Algebra in Engineering, Communication and Computing | 2022年 / 33卷
关键词
Finite fields; Composition method; Irreducible polynomials; Order of polynomial; Minimal polynomial; Square root;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider in detail the composition of an irreducible polynomial with X2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^2$$\end{document} and suggest a recurrent construction of irreducible polynomials of fixed degree over finite fields of odd characteristics. More precisely, given an irreducible polynomial of degree n and order 2rt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^rt$$\end{document} with t odd, the construction produces ordt(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ord_t(2)$$\end{document} irreducible polynomials of degree n and order t. The construction can be used for example to search irreducible polynomials with specific requirements on its coefficients.
引用
收藏
页码:163 / 171
页数:8
相关论文
共 50 条
  • [21] A generalization of the Hansen-Mullen conjecture on irreducible polynomials over finite fields
    Panario, Daniel
    Tzanakis, Georgios
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (02) : 303 - 315
  • [22] New recursive construction of normal polynomials over finite fields
    Abrahamyan, Sergey
    Kyureghyan, Melsik
    TOPICS IN FINITE FIELDS, 2015, 632 : 1 - 10
  • [23] Note on irreducible polynomials over finite field
    Chandoul, Amara
    Sibih, Alanod M.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (01): : 265 - 267
  • [24] On the parity of the number of irreducible factors of self-reciprocal polynomials over finite fields
    Ahmadi, Omran
    Vega, Gerardo
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (01) : 124 - 131
  • [25] Recursive construction of normal polynomials over finite fields
    Sharma, P. L.
    Ashima
    Sharma, Arun Kumar
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08) : 2645 - 2660
  • [26] On Inverses of Permutation Polynomials of Small Degree Over Finite Fields
    Zheng, Yanbin
    Wang, Qiang
    Wei, Wenhong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (02) : 914 - 922
  • [27] Enumerating permutation polynomials over finite fields by degree II
    Konyagin, S
    Pappalardi, F
    FINITE FIELDS AND THEIR APPLICATIONS, 2006, 12 (01) : 26 - 37
  • [28] COUNTING REDUCIBLE, POWERFUL, AND RELATIVELY IRREDUCIBLE MULTIVARIATE POLYNOMIALS OVER FINITE FIELDS
    Gathen, Joachim Von Zur
    Viola, Alfredo
    Ziegler, Konstantin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) : 855 - 891
  • [29] On coefficients of polynomials over finite fields
    Muratovic-Ribic, Amela
    Wang, Qiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (06) : 575 - 599
  • [30] ON IRREDUCIBLE FACTORS OF POLYNOMIALS OVER COMPLETE FIELDS
    Khanduja, Sudesh K.
    Kumar, Sanjeev
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (01)