Accelerating microfluidic immunoassays on filter membranes by applying vacuum

被引:0
|
作者
Yingyi Liu
Jie Yu
Meihong Du
Wenjun Wang
Wei Zhang
Zhuo Wang
Xingyu Jiang
机构
[1] National Center for NanoScience and Technology,CAS Key lab for Biological Effects of Nanomaterials and Nanosafety
[2] Beijing Center for Physical and Chemical Analysis,undefined
来源
Biomedical Microdevices | 2012年 / 14卷
关键词
Microfluidics; Cross array; Immunoassay; Vacuum; Accelerating;
D O I
暂无
中图分类号
学科分类号
摘要
This paper describes a vacuum-accelerated microfluidic immunoassay (we abbreviate it as VAMI) by sandwiching a filter membrane between a two-layer chip. A direct assay of IgG demonstrated that VAMI could simultaneously achieve higher sensitivity and require less time compared with conventional microfluidic immunoassays. We further applied VAMI to carry out a 3-step competitive assay (including antigen immobilization, competitive reaction and 2nd antibody reaction) for detecting the illegal food additive Sudan Red. A total assay time of 15 min with a limit of detection (LOD) of 1 ng ml-1 is achieved.
引用
收藏
页码:17 / 23
页数:6
相关论文
共 50 条
  • [21] Automated microfluidic processing platform for multiplexed magnetic bead immunoassays
    Sasso, Lawrence A.
    Johnston, Ian H.
    Zheng, Mingde
    Gupte, Rohit K.
    Uendar, Akif
    Zahn, Jeffrey D.
    MICROFLUIDICS AND NANOFLUIDICS, 2012, 13 (04) : 603 - 612
  • [22] A Quantitative First Passage Time Model for Tubular Microfluidic Immunoassays
    Lyu, Yingkai
    Zhang, Binmao
    Chai, Yujuan
    Zhang, Jie
    Wang, Li
    Xiao, Yujin
    Cheng, Bangning
    Qian, Chungen
    Yang, Hui
    Li, Hao
    Tan, Xiaotian
    ACS SENSORS, 2025, 10 (02): : 1387 - 1397
  • [23] Automated microfluidic processing platform for multiplexed magnetic bead immunoassays
    Lawrence A. Sasso
    Ian H. Johnston
    Mingde Zheng
    Rohit K. Gupte
    Akif Ündar
    Jeffrey D. Zahn
    Microfluidics and Nanofluidics, 2012, 13 : 603 - 612
  • [24] A label-free protein microfluidic array for parallel immunoassays
    Wang, Zhan-Hui
    Meng, Yong-Hong
    Ying, Pei-Qing
    Qi, Cai
    Jin, Gang
    ELECTROPHORESIS, 2006, 27 (20) : 4078 - 4085
  • [25] Single-bead arrays for fluorescence-based immunoassays on capillary-driven microfluidic chips
    Temiz, Yuksel
    Lim, Michel
    Delamarche, Emmanuel
    MICROFLUIDICS, BIOMEMS, AND MEDICAL MICROSYSTEMS XIV, 2016, 9705
  • [26] Accelerating cryoprotectant delivery using vacuum infiltration
    Forcier, Ryan J.
    Heussner, Robert T.
    Newsom, Lauren
    Giers, Morgan B.
    Al Rawashdeh, Wa 'el
    Buchanan, Kimberly A.
    Woods, Erik J.
    Johnstone, Brian H.
    Higgins, Adam Z.
    CRYOBIOLOGY, 2023, 112
  • [27] Prospective evaluation of the efficacy of immunoassays in the diagnosis of rupture of the membranes
    Esplin, M. Sean
    Hoffman, Mathew K.
    Theilen, Lauren
    Kupchak, Peter
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2020, 33 (15) : 2594 - 2600
  • [28] Microfluidic Multicolor Encoding of Microspheres with Nanoscopic Surface Complexity for Multiplex Immunoassays
    Kim, Shin-Hyun
    Shim, Jae Won
    Yang, Seung-Man
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (05) : 1171 - 1174
  • [29] Microfluidic capillary platform with hydrophilic PDMS for point-of-care immunoassays
    Condelipes, Pedro G. M.
    Petrou, Irini
    Iria, Ines
    Goncalves, Joao
    Santos, Ricardo
    Chu, Virginia
    Conde, Joao Pedro
    SENSORS AND ACTUATORS B-CHEMICAL, 2025, 423
  • [30] A microbead sieve and polarographic detection cell for immunoassays with a modular microfluidic interconnect
    Darling, RB
    Aw, E
    Mar, M
    MICRO TOTAL ANALYSIS SYSTEMS 2000, PROCEEDINGS, 2000, : 517 - 520