The class of order weakly demicompact operators

被引:0
作者
Hedi Benkhaled
Asrar Elleuch
Aref Jeribi
机构
[1] University of Sfax,Department of Mathematics
[2] Faculty of Sciences of Sfax,undefined
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2020年 / 114卷
关键词
Order weakly compact operator; Banach lattice; Order continuous norm; Positive Schur property; Demicompact operator; 46A40; 46B40; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
Meyer-Nieberg in (Banach Lattices, Springer-Verlag, Berlin, Heidelberg, New York, 1991) present some characterizations of the class of order weakly compact operators. The main focus of this paper is to invest these results in order to introduce the order weakly demicompact operators. Suppose that E is a Banach lattice. An operator T from E into E is said to be order weakly demicompact if, for every order bounded sequence {xn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x_{n}\}$$\end{document} in E+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{+}$$\end{document} such that xn→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n}\rightarrow 0$$\end{document} in σ(E,E′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (E,E')$$\end{document} and ‖xn-Txn‖→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert x_{n}-Tx_{n}\Vert \rightarrow 0$$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}, we have ‖xn‖→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert x_{n}\Vert \rightarrow 0$$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. In addition, we establish some properties of this class of operators. We also introduce the order positive Schur property of Banach lattice in order to give a condition under which each operator is order weakly demicompact.
引用
收藏
相关论文
共 18 条
  • [1] Aliprantis CD(1981)On weakly compact operators on Banach lattices Proc. Am. Math. Soc 83 573-578
  • [2] Burkinshaw O(2009)Some results on order weakly compact operators J. Math. Bohem. 134 359-367
  • [3] Aqzzouz B(2009)The duality problem for the class of order weakly compact operators Galsgow Math. J 51 101-108
  • [4] H’michane J(1979)Compact operators on Banach lattices Israel J. Math. 34 287-320
  • [5] Aqzzouz B(1975)O-weakly compact mappings of Riesz spaces Trans. Am. Math. Soc 214 389-402
  • [6] H’michane J(2001)Domination by positive disjointly strictly singular operators Proc. Am. Math. Soc. 129 1979-1986
  • [7] Dodds PG(1985)Ideal properties of regular operators between Banach lattices Illinois J. Math. 29 382-400
  • [8] Fremlin DH(2019)Weakly Demicompact Linear Operators and Axiomatic Measures of Weak Noncompactness Math. Slovaca 69 1403-1412
  • [9] Dodds PG(1966)Construction of fixed points of demicompact mappings in Hilbert space J. Math. Anal. Appl. 14 276-284
  • [10] Flores J(1981)Extremal structure of cones of operators Q. J. Math. Oxford Ser. 32 239-253