Convergence of the method of fundamental solutions for Poisson’s equation on the unit sphere

被引:0
作者
Xin Li
机构
[1] University of Nevada,Department of Mathematical Sciences
来源
Advances in Computational Mathematics | 2008年 / 28卷
关键词
fundamental solution; spherical harmonic; rate of convergence; 35J25; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
Solutions of boundary value problems of the Laplace equation on the unit sphere are constructed by using the fundamental solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi (\bf{x},\bf{y})=\frac{1}{4\pi \|\bf{x}-\bf{y}\|},\qquad \bf{x}, \bf{y}\in R^3.$$\end{document}With the use of radial basis approximation for finding particular solutions of Poisson's equation, the rate of convergence of the method of fundamental solutions is derived for solving the boundary value problems of Poisson’s equation.
引用
收藏
页码:269 / 282
页数:13
相关论文
共 33 条
  • [1] Atkinson K.E.(1985)The numerical evaluation of particular solutions for Poisson’s equation IMA J. Numer. Anal. 5 319-338
  • [2] Berens H.(1993)On the de la Vallée–Poussin means on the sphere Results Math. 24 12-26
  • [3] Li L.Q.(1985)Fundamental solutions method for elliptic boundary value problems SIAM J. Numer. Anal. 22 644-669
  • [4] Bogomolny A.(2003)Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation J. Comput. Acoust. 11 227-238
  • [5] Cessenat O.(1998)The method of fundamental solutions for elliptic boundary value problems Adv. Comput. Math. 9 69-95
  • [6] Després B.(2000)Trefftz method: A general theory Numer. Methods Partial Differ. Equ. 16 561-580
  • [7] Fairweather G.(1989)Spectral collocation methods Appl. Numer. Math. 5 177-208
  • [8] Karageorghis A.(1989)A mathematical study of the charge simulation method II J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 36 135-162
  • [9] Herrera I.(1990)Asymptotic error analysis of the charge simulation method in a Jordan region with an analytic boundary J. Fac. Sci., Univ. Tokyo, Sec. 1A, Math. 37 635-657
  • [10] Hussaini M.Y.(1994)Charge simulation method using exterior mapping functions Jpn. J. Ind. Appl. Math. 11 47-61