Evidence of Energy Supply by Active-Region Spicules to the Solar Atmosphere

被引:0
作者
S. Zeighami
A. R. Ahangarzadeh Maralani
E. Tavabi
A. Ajabshirizadeh
机构
[1] Research Institute for Astronomy and Astrophysics of Maragha (RIAAM),Center for Excellence in Astronomy and Astrophysics (CEAA)
[2] Islamic Azad University,Department of Physics, Tabriz Branch
[3] Payame Noor University (PNU),Physics Department
来源
Solar Physics | 2016年 / 291卷
关键词
Spicules; Oscillations; Active region; Corona; Solar wind;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the role of active-region spicules in the mass balance of the solar wind and energy supply in heating the solar atmosphere. We use high-cadence observations from the Solar Optical Telescope (SOT) onboard the Hinode satellite in the Ca ii H-line filter obtained on 26 January 2007. The observational technique provides the high spatio-temporal resolution required to detect fine structures such as spicules. We apply a Fourier power spectrum and wavelet analysis to Hinode/SOT time series of an active-region data set to explore the existence of coherent intensity oscillations. Coherent waves could be evidence of energy transport that serves to heat the solar atmosphere. Using time series, we measure the phase difference between two intensity profiles obtained at two different heights, which gives information about the phase difference between oscillations at those heights as a function of frequency. The results of a fast Fourier transform (FFT) show peaks in the power spectrum at frequencies in the range from 2 to 8 mHz at four different heights (above the limb), while the wavelet analysis indicates dominant frequencies similar to those of the Fourier power spectrum results. A coherency study indicates coherent oscillations at about 5.5 mHz (3 min). We measure mean phase speeds in the range 250–425kms−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$250\,\mbox{--}\,425~\mbox{km}\,\mbox{s}^{-1}$\end{document} increasing with height. The energy flux of these waves is estimated to be F=1.8×106–11.2×106ergcm−2s−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F = 1.8 \times 10^{6}\,\mbox{--}\,11.2 \times 10^{6}~\mbox{erg}\,\mbox{cm}^{ - 2}\,\mbox{s}^{ - 1}$\end{document} or 1.8–11.2kWm−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.8\,\mbox{--}\,11.2~\mbox{kW}\,\mbox{m}^{ - 2}$\end{document}, which indicates that they are sufficiently energetic to accelerate the solar wind and heat the corona to temperatures of several million degrees. We compute the the mass flux carried by spicules of 3×10−10–2×10−9gcm−2s−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3 \times 10^{ - 10}\,\mbox{--}\,2 \times 10^{ - 9}~\mbox{g}\,\mbox{cm}^{ - 2}\,\mbox{s}^{ - 1}$\end{document}, which is 10 – 60 times higher than the mass that is carried away from the corona because of the solar wind (about 3×10−11gcm−2s−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3 \times 10^{ - 11}~\mbox{g}\,\mbox{cm}^{ - 2}\,\mbox{s}^{ - 1}$\end{document}). Therefore, our results indicate that about 0.02 – 0.1 of the spicule mass is ejected from the corona, while the remainder reverts to the chromosphere. In other words, spicules can supply the mass lost due to the slow solar wind.
引用
收藏
页码:847 / 858
页数:11
相关论文
共 50 条
  • [41] Theoretical evidence for cutoff frequencies for Alfv,n waves propagating in the solar atmosphere
    Perera, H. K.
    Musielak, Z. E.
    Murawski, K.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 450 (03) : 3169 - 3180
  • [43] Static and dynamic modeling of a solar active region
    Warren, Harry P.
    Winebarger, Amy R.
    ASTROPHYSICAL JOURNAL, 2007, 666 (02) : 1245 - 1255
  • [44] An investigation into the variability of heating in a solar active region
    Ugarte-Urra, Ignacio
    Winebarger, Amy R.
    Warren, Harry P.
    ASTROPHYSICAL JOURNAL, 2006, 643 (02) : 1245 - 1257
  • [45] Density and temperature measurements in a solar active region
    Warren, HP
    Winebarger, AR
    ASTROPHYSICAL JOURNAL, 2003, 596 (01) : L113 - L116
  • [46] THE TEMPERATURE DEPENDENCE OF SOLAR ACTIVE REGION OUTFLOWS
    Warren, Harry P.
    Ugarte-Urra, Ignacio
    Young, Peter R.
    Stenborg, Guillermo
    ASTROPHYSICAL JOURNAL, 2011, 727 (01)
  • [47] Active Region Contributions to the Solar Wind over Multiple Solar Cycles
    Stansby, David
    Green, Lucie M.
    van Driel-Gesztelyi, Lidia
    Horbury, Timothy S.
    SOLAR PHYSICS, 2021, 296 (08)
  • [48] Active Region Contributions to the Solar Wind over Multiple Solar Cycles
    David Stansby
    Lucie M. Green
    Lidia van Driel-Gesztelyi
    Timothy S. Horbury
    Solar Physics, 2021, 296
  • [49] Detections of high-frequency oscillations in solar active region coronal loops
    Katsiyannis, AC
    Williams, DR
    McAteer, RTJ
    Gallagher, PT
    Mathioudakis, M
    Keenan, FP
    SOLMAG 2002: PROCEEDINGS OF THE MAGNETIC COUPLING OF THE SOLAR ATMOSPHERE EUROCONFERENCE AND IAU COLLOQUIUM 188, 2002, 505 : 441 - 444
  • [50] Response of the solar atmosphere to magnetic field evolution in a coronal hole region
    Yang, S. H.
    Zhang, J.
    Jin, C. L.
    Li, L. P.
    Duan, H. Y.
    ASTRONOMY & ASTROPHYSICS, 2009, 501 (02): : 745 - 753