Regression analysis of temperature-dependent mechanical and thermal properties of dielectric technical ceramics

被引:0
|
作者
Daithí de Faoite
David J. Browne
Kenneth T. Stanton
机构
[1] University College Dublin,School of Mechanical and Materials Engineering
来源
关键词
Compressive Strength; Bulk Modulus; Beryllia; Silicon Nitride; Specific Heat Capacity;
D O I
暂无
中图分类号
学科分类号
摘要
Regression analysis is performed on a data set of temperature-dependent material properties of several ceramic materials. The materials considered are alumina, aluminium nitride, beryllia, fused quartz, sialon, and silicon nitride. The properties considered are density, Young’s, bulk, and shear moduli, Poisson’s ratio, tensile, flexural and compressive strength, thermal conductivity, specific heat capacity, and thermal expansion coefficient. The data set, previously reported by de Faoite et al. (J Mater Sci 47(10):4211, 2012), was compiled to facilitate the materials selection and design of a ceramic component for the Variable Specific-Impulse Magnetoplasma Rocket (VASIMR®). Temperature-dependent material property data are required for accurate thermo-structural modelling of such ceramic components which operate over a wide temperature range. The goal of this paper is to calculate a set of regression coefficients to reduce this data set to a tractable format for use in the materials selection and design of such components. Regression analysis could not be performed for all material properties for all of these materials, due to a lack of data in the literature, and these gaps in the available data are highlighted.
引用
收藏
页码:451 / 461
页数:10
相关论文
共 50 条
  • [41] An Efficient Approximation of Frequency and Temperature-Dependent Dielectric Properties of Tissues
    Zhuk M.
    Paradis J.
    Progress In Electromagnetics Research B, 2021, 91 : 79 - 96
  • [42] Temperature-dependent dielectric properties of ZnO-CuO nanocomposite
    Amin, Talha
    Raza, Adil
    Noor, Hadia
    Raza, Ali
    Haidry, Azhar Ali
    MATERIALS LETTERS, 2025, 391
  • [43] Measurement of Broadband Temperature-Dependent Dielectric Properties of Liver Tissue
    Fallahi, Hojjatollah
    Prakash, Punit
    PROCEEDINGS OF THE 2018 IEEE/MTT-S INTERNATIONAL MICROWAVE BIOMEDICAL CONFERENCE (IMBIOC), 2018, : 91 - 93
  • [44] Temperature-dependent Dielectric Properties in ITO/AF/AI Device
    Choi, Hyun-Min
    Kim, Won-Jong
    Lee, Jong-Yong
    Hong, Jin-Woong
    Kim, Tae-Wan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 57 (06) : 1619 - 1623
  • [45] Frequency, moisture and temperature-dependent dielectric properties of chickpea flour
    Guo, W.
    Tiwari, G.
    Tang, J.
    Wang, S.
    BIOSYSTEMS ENGINEERING, 2008, 101 (02) : 217 - 224
  • [46] MODELS OF LUNAR SURFACE WITH TEMPERATURE-DEPENDENT THERMAL PROPERTIES
    LINSKY, J
    ASTRONOMICAL JOURNAL, 1966, 71 (03): : 168 - &
  • [47] Identification of Temperature-Dependent Thermal Properties of Solid Materials
    Tillmann, Amanda R.
    Borges, Valerio Luiz
    Guimaraes, Gilmar
    de Lima e Silva, Ana Lucia F.
    de Lima e Silva, Sandro M. M.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2008, 30 (04) : 269 - 278
  • [48] INFLUENCE OF TEMPERATURE-DEPENDENT PROPERTIES ON THERMAL ROCK FRAGMENTATION
    LEHNHOFF, TF
    SCHELLER, JD
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1975, 12 (08): : 255 - 260
  • [49] Temperature-dependent thermal properties of Ru/C multilayers
    Yan, Shuai
    Jiang, Hui
    Wang, Hua
    He, Yan
    Li, Aiguo
    Zheng, Yi
    Dong, Zhaohui
    Tian, Naxi
    JOURNAL OF SYNCHROTRON RADIATION, 2017, 24 : 975 - 980
  • [50] Convective and radiative thermal analysis of composite wall with nonlinear temperature-dependent properties
    Singhal M.
    Singla R.K.
    Goyal K.
    Heat Transfer Research, 2020, 51 (03): : 275 - 296