Path dependent volatility

被引:10
|
作者
Foschi P. [1 ]
Pascucci A. [2 ]
机构
[1] Dipartimento Matemates, Università di Bologna, 40126 Bologna
[2] Dipartimento di Matematica, Università di Bologna, 40126 Bologna
关键词
Kolmogorov equations; Option pricing; Volatility modeling;
D O I
10.1007/s10203-007-0076-6
中图分类号
学科分类号
摘要
We propose a general class of non-constant volatility models with dependence on the past. The framework includes path-dependent volatility models such as that by Hobson and Rogers and also path dependent contracts such as options of Asian style. A key feature of the model is that market completeness is preserved. Some empirical analysis, based on the comparison with standard local volatility and Heston models, shows the effectiveness of the path dependent volatility. In particular, it turns out that, when large market movements occur, the tracking errors of Heston minimum-variance hedging are up to twice the hedging errors of a path dependent volatility model. © Springer-Verlag 2007.
引用
收藏
页码:13 / 32
页数:19
相关论文
共 50 条
  • [21] Financial volatility forecasting with range-based autoregressive volatility model
    Li, Hongquan
    Hong, Yongmiao
    FINANCE RESEARCH LETTERS, 2011, 8 (02) : 69 - 76
  • [22] Quadratic approximation of the slow factor of volatility in a multifactor stochastic volatility model
    Malhotra, Gifty
    Srivastava, R.
    Taneja, H. C.
    JOURNAL OF FUTURES MARKETS, 2018, 38 (05) : 607 - 624
  • [23] Dirichlet Bridge Sampling for the Variance Gamma Process: Pricing Path-Dependent Options
    Kaishev, Vladimir K.
    Dimitrova, Dimitrina S.
    MANAGEMENT SCIENCE, 2009, 55 (03) : 483 - 496
  • [24] On the error in the Monte Carlo pricing of some familiar European path-dependent options
    Hörfelt, P
    MATHEMATICAL FINANCE, 2005, 15 (02) : 345 - 357
  • [25] THE WIENER-HOPF TECHNIQUE AND DISCRETELY MONITORED PATH-DEPENDENT OPTION PRICING
    Green, Ross
    Fusai, Gianluca
    Abrahams, I. David
    MATHEMATICAL FINANCE, 2010, 20 (02) : 259 - 288
  • [26] The implied volatility smirk
    Zhang, Jin E.
    Xiang, Yi
    QUANTITATIVE FINANCE, 2008, 8 (03) : 263 - 284
  • [27] A bias in the volatility smile
    Don M. Chance
    Thomas A. Hanson
    Weiping Li
    Jayaram Muthuswamy
    Review of Derivatives Research, 2017, 20 : 47 - 90
  • [28] Deep Local Volatility
    Chataigner, Marc
    Crepey, Stephane
    Dixon, Matthew
    RISKS, 2020, 8 (03) : 1 - 18
  • [29] A bias in the volatility smile
    Chance, Don M.
    Hanson, Thomas A.
    Li, Weiping
    Muthuswamy, Jayaram
    REVIEW OF DERIVATIVES RESEARCH, 2017, 20 (01) : 47 - 90
  • [30] Volatility Bursts: A Discrete-Time Option Model with Multiple Volatility Components
    Lilla, Francesca
    JOURNAL OF FINANCIAL ECONOMETRICS, 2023, 21 (03) : 678 - 713