Rigorous mean-field limit and cross-diffusion

被引:0
|
作者
Li Chen
Esther S. Daus
Ansgar Jüngel
机构
[1] University of Mannheim,Department of Mathematics
[2] Vienna University of Technology,Institute for Analysis and Scientific Computing
来源
Zeitschrift für angewandte Mathematik und Physik | 2019年 / 70卷
关键词
Interacting particle system; Stochastic processes; Cross-diffusion system; Mean-field equations; Mean-field limit; Population dynamics; 35Q92; 35K45; 60J70; 60H30; 82C22;
D O I
暂无
中图分类号
学科分类号
摘要
The mean-field limit in a weakly interacting stochastic many-particle system for multiple population species in the whole space is proved. The limiting system consists of cross-diffusion equations, modeling the segregation of populations. The mean-field limit is performed in two steps: First, the many-particle system leads in the large population limit to an intermediate nonlocal diffusion system. The local cross-diffusion system is then obtained from the nonlocal system when the interaction potentials approach the Dirac delta distribution.The global existence of the limiting and the intermediate diffusion systems is shown for small initial data, and an error estimate is given.
引用
收藏
相关论文
共 50 条
  • [41] Rigorous Analysis of Discontinuous Phase Transitions via Mean-Field Bounds
    Marek Biskup
    Lincoln Chayes
    Communications in Mathematical Physics, 2003, 238 : 53 - 93
  • [42] Rigorous analysis of discontinuous phase transitions via mean-field bounds
    Biskup, M
    Chayes, L
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (1-2) : 53 - 93
  • [43] Rigorous Dynamical Mean-Field Theory for Stochastic Gradient Descent Methods
    Gerbelot, Cedric
    Troiani, Emanuele
    Mignacco, Francesca
    Krzakala, Florent
    Zdeborova, Lenka
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2024, 6 (02): : 400 - 427
  • [44] Dynamical mean-field theory of correlated hopping: A rigorous local approach
    Shvaika, AM
    PHYSICAL REVIEW B, 2003, 67 (07):
  • [45] Porous medium equation and cross-diffusion systems as limit of nonlocal interaction
    Burger, Martin
    Esposito, Antonio
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 235
  • [46] Rigorous Derivation of Population Cross-Diffusion Systems from Moderately Interacting Particle Systems
    Chen, Li
    Daus, Esther S.
    Holzinger, Alexandra
    Juengel, Ansgar
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (06)
  • [47] Rigorous Derivation of Population Cross-Diffusion Systems from Moderately Interacting Particle Systems
    Li Chen
    Esther S. Daus
    Alexandra Holzinger
    Ansgar Jüngel
    Journal of Nonlinear Science, 2021, 31
  • [48] Validity of the mean-field approximation for diffusion on a random comb
    Revathi, S
    Balakrishnan, V
    Lakshmibala, S
    Murthy, KPN
    PHYSICAL REVIEW E, 1996, 54 (03): : 2298 - 2302
  • [49] Lattice mean-field method for stationary polymer diffusion
    Scheinhardt-Engels, SM
    Leermakers, FAM
    Fleer, GJ
    PHYSICAL REVIEW E, 2003, 68 (01):
  • [50] Nonlinear turbulent magnetic diffusion and mean-field dynamo
    Rogachevskii, I
    Kleeorin, N
    PHYSICAL REVIEW E, 2001, 64 (05): : 14