Rigorous mean-field limit and cross-diffusion

被引:0
|
作者
Li Chen
Esther S. Daus
Ansgar Jüngel
机构
[1] University of Mannheim,Department of Mathematics
[2] Vienna University of Technology,Institute for Analysis and Scientific Computing
来源
Zeitschrift für angewandte Mathematik und Physik | 2019年 / 70卷
关键词
Interacting particle system; Stochastic processes; Cross-diffusion system; Mean-field equations; Mean-field limit; Population dynamics; 35Q92; 35K45; 60J70; 60H30; 82C22;
D O I
暂无
中图分类号
学科分类号
摘要
The mean-field limit in a weakly interacting stochastic many-particle system for multiple population species in the whole space is proved. The limiting system consists of cross-diffusion equations, modeling the segregation of populations. The mean-field limit is performed in two steps: First, the many-particle system leads in the large population limit to an intermediate nonlocal diffusion system. The local cross-diffusion system is then obtained from the nonlocal system when the interaction potentials approach the Dirac delta distribution.The global existence of the limiting and the intermediate diffusion systems is shown for small initial data, and an error estimate is given.
引用
收藏
相关论文
共 50 条
  • [1] Rigorous mean-field limit and cross-diffusion
    Chen, Li
    Daus, Esther S.
    Juengel, Ansgar
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (04):
  • [2] Vanishing cross-diffusion limit in a Keller-Segel system with additional cross-diffusion
    Juengel, Ansgar
    Leingang, Oliver
    Wang, Shu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192
  • [3] ALTERNATIVE FORMULATION OF RIGOROUS MEAN-FIELD THEORY
    GATES, DJ
    JOURNAL OF STATISTICAL PHYSICS, 1976, 15 (06) : 513 - 516
  • [4] Rigorous results on the bipartite mean-field model
    Fedele, Micaela
    Unguendoli, Francesco
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (38)
  • [5] RIGOROUS RESULTS IN MEAN-FIELD THEORY OF FREEZING
    GATES, DJ
    ANNALS OF PHYSICS, 1972, 71 (02) : 395 - &
  • [6] Solitary states in the mean-field limit
    Kruk, N.
    Maistrenko, Y.
    Koeppl, H.
    CHAOS, 2020, 30 (11)
  • [7] Amplitude death with mean-field diffusion
    Sharma, Amit
    Shrimali, Manish Dev
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [8] MEAN-FIELD THEORIES FOR MULTIDIMENSIONAL DIFFUSION
    KAUFMAN, AD
    WHALEY, KB
    JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (05): : 2758 - 2767
  • [9] Suppression of oscillations in mean-field diffusion
    Kamal, Neeraj Kumar
    Sharma, Pooja Rani
    Shrimali, Manish Dev
    PRAMANA-JOURNAL OF PHYSICS, 2015, 84 (02): : 237 - 247
  • [10] ON LIMIT SYSTEMS FOR SOME POPULATION MODELS WITH CROSS-DIFFUSION
    Kuto, Kousuke
    Yamada, Yoshio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (08): : 2745 - 2769