Global solutions and uniform boundedness of attractive/repulsive LV competition systems

被引:0
作者
Yuanyuan Zhang
机构
[1] Southwestern University of Finance and Economics,School of Securities and Futures
来源
Advances in Difference Equations | / 2018卷
关键词
Lotka–Volterra competition system; Global solution; Uniform boundedness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study global solutions to the following strongly coupled systems: {ut=∇⋅(D1∇u−χu∇v)+(a1−b1u−c1v)u,x∈Ω,t>0,0=D2Δv+(a2−b2u−c2v)v,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textstyle\begin{cases} u_{t}=\nabla\cdot(D_{1} \nabla u -\chi u \nabla v)+(a_{1}-b_{1}u-c_{1}v)u,\quad x \in\Omega,t>0, \\ 0=D_{2}\Delta v+(a_{2}-b_{2}u-c_{2}v)v,\quad x \in\Omega,t>0, \end{cases} $$\end{document} over Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega\subset\mathbb{R}^{N}$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N\geq2$\end{document}, subject to homogeneous Neumann boundary conditions and nonnegative initial data. Here Di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{i}$\end{document}, ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{i}$\end{document}, bi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b_{i}$\end{document} and ci\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c_{i}$\end{document}, i=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=1,2$\end{document}, are positive constant. It is proved that this system admits global and bounded classical solutions for all χ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi>0$\end{document}. We also prove the global well-posedness for its repulsive counterpart {ut=∇⋅(D1∇u+χu∇v)+(a1−b1u−c1v)u,x∈Ω,t>0,0=D2Δv+(a2−b2u−c2v)v,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textstyle\begin{cases} u_{t}=\nabla\cdot(D_{1} \nabla u +\chi u \nabla v)+(a_{1}-b_{1}u-c_{1}v)u,\quad x \in\Omega,t>0, \\ 0=D_{2}\Delta v+(a_{2}-b_{2}u-c_{2}v)v,\quad x \in\Omega,t>0, \end{cases} $$\end{document} provided that b1>a2b2χ(N−2)c2D2N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b_{1}>\frac{a_{2}b_{2} \chi(N-2)}{c_{2}D_{2} N}$\end{document}. Our results extend (Discrete Contin. Dyn. Syst. 35:1239–1284, 2015) to higher dimensions and to its repulsive case.
引用
收藏
相关论文
共 34 条
  • [1] Wang Q.(2015)Qualitative analysis of a Lotka–Volterra competition system with advection Discrete Contin. Dyn. Syst. 35 1239-1284
  • [2] Gai C.(2009)A user’s guide to PDE models for chemotaxis J. Math. Biol. 58 183-217
  • [3] Yan J.(1996)Chemotactic collapse for the Keller–Segel model J. Math. Biol. 35 177-194
  • [4] Hillen T.(2015)Chemotaxis can prevent thresholds on population density Discrete Contin. Dyn. Syst., Ser. B 20 1499-1527
  • [5] Painter K.(2014)How far can chemotactic cross–diffusion enforce exceeding carrying capacities? J. Nonlinear Sci. 24 809-855
  • [6] Herrero M.A.(2007)A chemotaxis system with logistic source Commun. Partial Differ. Equ. 32 849-877
  • [7] Velazquez J.J.L.(2008)A reaction–diffusion system modeling predator–prey with prey–taxis Nonlinear Anal., Real World Appl. 9 2086-2105
  • [8] Lankeit J.(2015)Global boundedness of solutions in a reaction–diffusion system of predator–prey model with prey–taxis Appl. Math. Lett. 49 73-77
  • [9] Winkler M.(2009)Pattern formation in prey–taxis systems J. Biol. Dyn. 3 551-573
  • [10] Tello J.(2008)Continuous traveling waves for prey–taxis Bull. Math. Biol. 70 654-676